Skip to main content

Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9050))

Included in the following conference series:

Abstract

Popular outlier detection methods require the pairwise comparison of objects to compute the nearest neighbors. This inherently quadratic problem is not scalable to large data sets, making multidimensional outlier detection for big data still an open challenge. Existing approximate neighbor search methods are designed to preserve distances as well as possible. In this article, we present a highly scalable approach to compute the nearest neighbors of objects that instead focuses on preserving neighborhoods well using an ensemble of space-filling curves. We show that the method has near-linear complexity, can be distributed to clusters for computation, and preserves neighborhoods—but not distances—better than established methods such as locality sensitive hashing and projection indexed nearest neighbors. Furthermore, we demonstrate that, by preserving neighborhoods, the quality of outlier detection based on local density estimates is not only well retained but sometimes even improved, an effect that can be explained by relating our method to outlier detection ensembles. At the same time, the outlier detection process is accelerated by two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. JCSS 66, 671–687 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with 3D-parallel-coordinate-trees. In: Proc. SIGMOD, pp. 1009–1012 (2013)

    Google Scholar 

  3. Aggarwal, C.C.: Outlier ensembles. SIGKDD Explor. 14(2), 49–58 (2012)

    Article  Google Scholar 

  4. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE TKDE 17(2), 203–215 (2005)

    MathSciNet  Google Scholar 

  5. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://www.archive.ics.uci.edu/ml

  6. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proc. KDD, pp. 29–38 (2003)

    Google Scholar 

  7. Breunig, M.M., Kriegel, H.P., Ng, R., Sander, J.: LOF: identifying density-based local outliers. In: Proc. SIGMOD, pp. 93–104 (2000)

    Google Scholar 

  8. Butz, A.R.: Alternative algorithm for Hilbert’s space-filling curve. IEEE TC 100(4), 424–426 (1971)

    Google Scholar 

  9. Chan, T.M.: Approximate nearest neighbor queries revisited. Disc. & Comp. Geom. 20(3), 359–373 (1998)

    Article  MATH  Google Scholar 

  10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM CSUR 41(3), Article 15, 1–58 (2009)

    Google Scholar 

  11. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: Proc. ACM SoCG, pp. 253–262 (2004)

    Google Scholar 

  12. de Vries, T., Chawla, S., Houle, M.E.: Density-preserving projections for large-scale local anomaly detection. KAIS 32(1), 25–52 (2012)

    Google Scholar 

  13. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library of object images. Int. J. Computer Vision 61(1), 103–112 (2005)

    Article  Google Scholar 

  14. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proc. VLDB, pp. 518–529 (1999)

    Google Scholar 

  15. Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann. 38(3), 459–460 (1891)

    Article  MATH  MathSciNet  Google Scholar 

  16. Houle, M.E., Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Can shared-neighbor distances defeat the curse of dimensionality? In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 482–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proc. STOC, pp. 604–613 (1998)

    Google Scholar 

  18. Jin, W., Tung, A.K.H., Han, J., Wang, W.: Ranking outliers using symmetric neighborhood relationship. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 577–593. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in Modern Analysis and Probability, Contemporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society (1984)

    Google Scholar 

  20. Kabán, A.: On the distance concentration awareness of certain data reduction techniques. Pattern Recognition 44(2), 265–277 (2011)

    Article  MATH  Google Scholar 

  21. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using fractals. In: Proc. VLDB, pp. 500–509 (1994)

    Google Scholar 

  22. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In: Proc. VLDB, pp. 392–403 (1998)

    Google Scholar 

  23. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proc. KDD, pp. 157–166 (2005)

    Google Scholar 

  24. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web J. (2014)

    Google Scholar 

  25. Liao, S., Lopez, M.A., Leutenegger, S.T.: High dimensional similarity search with space filling curves. In: Proc. ICDE, pp. 615–622 (2001)

    Google Scholar 

  26. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Structures & Algorithms 33(2), 142–156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequencing. Tech. rep, International Business Machines Co. (1966)

    Google Scholar 

  28. Nguyen, G., Franco, P., Mullot, R., Ogier, J.M.: Mapping high dimensional features onto Hilbert curve: applying to fast image retrieval. In: ICPR12, pp. 425–428 (2012)

    Google Scholar 

  29. Nguyen, H.V., Gopalkrishnan, V.: Efficient pruning schemes for distance-based outlier detection. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 160–175. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Orair, G.H., Teixeira, C., Wang, Y., Meira Jr., W., Parthasarathy, S.: Distance-based outlier detection: Consolidation and renewed bearing. PVLDB 3(2), 1469–1480 (2010)

    Google Scholar 

  31. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36(1), 157–160 (1890)

    Article  MATH  MathSciNet  Google Scholar 

  32. Radovanović, M., Nanopoulos, A., Ivanović, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE TKDE (2014)

    Google Scholar 

  33. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: Proc. SIGMOD, pp. 427–438 (2000)

    Google Scholar 

  34. Rasmussen, A., Porter, G., Conley, M., Madhyastha, H., Mysore, R., Pucher, A., Vahdat, A.: TritonSort: a balanced large-scale sorting system. In: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation (2011)

    Google Scholar 

  35. Schubert, E., Wojdanowski, R., Zimek, A., Kriegel, H.P.: On evaluation of outlier rankings and outlier scores. In: Proc. SDM, pp. 1047–1058 (2012)

    Google Scholar 

  36. Schubert, E., Zimek, A., Kriegel, H.P.: Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data Min. Knowl. Disc. 28(1), 190–237 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shepherd, J.A., Zhu, X., Megiddo, N.: Fast indexing method for multidimensional nearest-neighbor search. In: Proc. SPIE, pp. 350–355 (1998)

    Google Scholar 

  38. Venkatasubramanian, S., Wang, Q.: The Johnson-Lindenstrauss transform: an empirical study. In: Proc. ALENEX Workshop (SIAM), pp. 164–173 (2011)

    Google Scholar 

  39. Wang, Y., Parthasarathy, S., Tatikonda, S.: Locality sensitive outlier detection: a ranking driven approach. In: Proc. ICDE, pp. 410–421 (2011)

    Google Scholar 

  40. Zimek, A., Campello, R.J.G.B., Sander, J.: Ensembles for unsupervised outlier detection: Challenges and research questions. SIGKDD Explor. 15(1), 11–22 (2013)

    Article  Google Scholar 

  41. Zimek, A., Campello, R.J.G.B., Sander, J.: Data perturbation for outlier detection ensembles. In: Proc. SSDBM, vol. 13, pp. 1–12 (2014)

    Google Scholar 

  42. Zimek, A., Gaudet, M., Campello, R.J.G.B., Sander, J.: Subsampling for efficient and effective unsupervised outlier detection ensembles. In: Proc. KDD, pp. 428–436 (2013)

    Google Scholar 

  43. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. 5(5), 363–387 (2012)

    Article  MathSciNet  Google Scholar 

  44. Zolotarev, V.M.: One-dimensional stable distributions. Translations of Mathematical Monographs, vol. 65. American Mathematical Society (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schubert, E., Zimek, A., Kriegel, HP. (2015). Fast and Scalable Outlier Detection with Approximate Nearest Neighbor Ensembles. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M. (eds) Database Systems for Advanced Applications. DASFAA 2015. Lecture Notes in Computer Science(), vol 9050. Springer, Cham. https://doi.org/10.1007/978-3-319-18123-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18123-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18122-6

  • Online ISBN: 978-3-319-18123-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics