Skip to main content

Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells

  • Chapter
Mathematical Analysis of Complex Cellular Activity

Abstract

Dynamical systems theory provides a number of powerful tools for analyzing biological models, providing much more information than can be obtained from numerical simulation alone. In this chapter, we demonstrate how geometric singular perturbation analysis can be used to understand the dynamics of bursting in endocrine pituitary cells. This analysis technique, often called “fast/slow analysis,” takes advantage of the different time scales of the system of ordinary differential equations and formally separates it into fast and slow subsystems. A standard fast/slow analysis, with a single slow variable, is used to understand bursting in pituitary gonadotrophs. The bursting produced by pituitary lactotrophs, somatotrophs, and corticotrophs is more exotic, and requires a fast/slow analysis with two slow variables. It makes use of concepts such as canards, folded singularities, and mixed-mode oscillations. Although applied here to pituitary cells, the approach can and has been used to study mixed-mode oscillations in other systems, including neurons, intracellular calcium dynamics, and chemical systems. The electrical bursting pattern produced in pituitary cells differs fundamentally from bursting oscillations in neurons, and an understanding of the dynamics requires very different tools from those employed previously in the investigation of neuronal bursting. The chapter thus serves both as a case study for the application of recently-developed tools in geometric singular perturbation theory to an application in biology and a tutorial on how to use the tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baer SM, Gaekel EM (2008) Slow acceleration and deacceleration through a Hopf bifurcation: Power ramps, target nucleation, and elliptic bursting. Phys Rev 78:036205

    MathSciNet  Google Scholar 

  • Baer SM, Erneux T, Rinzel J (1989) The slow passage through a Hopf bifurcation: Delay, memory effects, and resonance. SIAM J Appl Math 49:55–71

    Article  MATH  MathSciNet  Google Scholar 

  • Benoit E (1983) Syst‘emes lents-rapids dans r3 et leur canards. Asterique 109–110:159–191

    MathSciNet  Google Scholar 

  • Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413–439

    Article  MATH  Google Scholar 

  • Bertram R, Sherman A, Satin LS (2010) Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. In: Islam MS (ed) The Islets of Langerhans, Springer, pp 261–279

    Google Scholar 

  • Brons M, Krupa M, Wechselberger M (2006) Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst Commun 49:39–63

    MathSciNet  Google Scholar 

  • Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic β-cell. Biophys J 42:181–190

    Article  Google Scholar 

  • Clayton TF, Murray AF, Leng G (2010) Modelling the in vivo spike activity of phasically-firing vasopressin cells. J Neuroendocrinology 22:1290–1300

    Article  Google Scholar 

  • Coombes S, Bressloff PC (2005) Bursting: The Genesis of Rhythm in the Nervous System. World Scientific

    Google Scholar 

  • Crunelli V, Kelly JS, Leresche N, Pirchio M (1987) The ventral and dorsal lateral geniculate nucleus of the rat: Intracellular recordings in vitro. J Physiol 384:587–601

    Article  Google Scholar 

  • Dean PM, Mathews EK (1970) Glucose-induced electrical activity in pancreatic islet cells. J Physiol 210:255–264

    Article  Google Scholar 

  • Del Negro CA, Hsiao CF, Chandler SH, Garfinkel A (1998) Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophys J 75:174–182

    Article  Google Scholar 

  • Desroches M, Krauskopf B, Osinga HM (2008a) The geometry of slow manifolds near a folded node. SIAM J Appl Dyn Syst 7:1131–1162

    Article  MATH  MathSciNet  Google Scholar 

  • Desroches M, Krauskopf B, Osinga HM (2008b) Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. Chaos 18:015107

    Article  MathSciNet  Google Scholar 

  • Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga HM, Wechselberger M (2012) Mixed-mode oscillations with multiple time scales. SIAM Rev 54:211–288

    Article  MATH  MathSciNet  Google Scholar 

  • Doedel EJ (1981) AUTO: A program for the automatic bifurcation analysis of autonomous systems. Congr Numer 30:265–284

    MathSciNet  Google Scholar 

  • Doedel EJ, Champneys DJ, Fairgrieve TF, Kuznetov YA, Oldeman KE, Paffenroth RC, Sandstede B, Wang XJ, Zhang C (2007) AUTO-07P: Continuation and bifurcation software for ordinary differential equations Available at http://cmvl.cs.concordia.ca

  • Duan W, Lee K, Herbison AE, Sneyd J (2011) A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. J theor Biol 276:22–34

    Article  MathSciNet  Google Scholar 

  • Erchova I, McGonigle DJ (2008) Rhythms in the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos 18:015115

    Article  MathSciNet  Google Scholar 

  • Fenichel N (1979) Genometric singular perturbation theory. J Differ Equ 31:53–98

    Article  MATH  MathSciNet  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretic models of nerve membrane. Biophys J 1:445–466

    Article  Google Scholar 

  • Fletcher PA, Li YX (2009) An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophys J 96:4514–4524

    Article  Google Scholar 

  • Freeman ME (2006) Neuroendocrine control of the ovarian cycle of the rat. In: Neill JD (ed) Knobil and Neill’s Physiology of Reproduction, 3rd edn, Elsevier, pp 2327–2388

    Google Scholar 

  • Guckenheimer J (2008) Singular Hopf bifurcation in systems with two slow variables. SIAM J Appl Dyn Syst 7:1355–1377

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer J, Haiduc R (2005) Canards at folded nodes. Mosc Math J 5:91–103

    MATH  MathSciNet  Google Scholar 

  • Guckenheimer J, Scheper C (2011) A gemometric model for mixed-mode oscillations in a chemical system. SIAM J Appl Dyn Syst 10:92–128

    Article  MATH  MathSciNet  Google Scholar 

  • Harvey E, Kirk V, Osinga H, Sneyd J, Wechselberger M (2010) Understanding anomalous delays in a model of intracelular calcium dynamics. Chaos 20:045104

    Article  MathSciNet  Google Scholar 

  • Harvey E, Kirk V, Sneyd J, Wechselberger M (2011) Multiple time scales, mixed-mode oscillations and canards in models of intracellular calcium dynamics. J Nonlinear Sci 21:639–683

    Article  MATH  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 117:500–544

    Article  Google Scholar 

  • Izhikevich EM (2007) Dynamical Systems in Neuroscience. MIT Press

    Google Scholar 

  • Keener K, Sneyd J (2008) Mathematical Physiology, 2nd edn. Springer

    Google Scholar 

  • Krupa M, Wechselberger M (2010) Local analysis near a folded saddle-node singularity. J Differ Equ 248:2841–2888

    Article  MATH  MathSciNet  Google Scholar 

  • Kukuljan M, Rojas E, Catt KJ, Stojilković SS (1994) Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J Biol Chem 269:4860–4865

    Google Scholar 

  • Kuryshev YA, Childs GV, Ritchie AK (1996) Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes. Endocrinology 137:2269–2277

    Google Scholar 

  • LeBeau AP, van Goor F, Stojilković SS, Sherman A (2000) Modeling of membrane excitability in gonadotropin-releasing hormone-secreting hypothalamic neurons regulated by Ca2+-mobilizing and adenylyl cyclase-coupled receptors. J Neurosci 20:9290–9297

    Google Scholar 

  • Lee K, Duan W, Sneyd J, Herbison AE (2010) Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. J Neurosci 30:6214–6224

    Article  Google Scholar 

  • Li YX, Rinzel J (1994) Equations for InsP3 receptor-mediated [Ca 2+] oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J theor Biol 166:461–473

    Article  Google Scholar 

  • Li YX, Rinzel J, Keizer J, Stojilković SS (1994) Calcium oscillations in pituitary gonadotrophs: Comparison of experiment and theory. Proc Natl Acad Sci USA 91:58–62

    Article  Google Scholar 

  • Li YX, Keizer J, Stojilković SS, Rinzel J (1995) Ca2+ excitability of the ER membrane: An explanation for IP3-induced Ca2+ oscillations. Am J Physiol 269:C1079–C1092

    Google Scholar 

  • Lyons DJ, Horjales-Araujo E, Broberger C (2010) Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: Switch to tonic discharge by thyrotropin-releasing hormone. Neuron 65:217–229

    Article  Google Scholar 

  • Milescu LS, Yamanishi T, Ptak K, Mogri MZ, Smith JC (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87

    Article  Google Scholar 

  • Milik A, Szmolyan P (2001) Multiple time scales and canards in a chemical oscillator. In: Jones C, Khibnik A (eds) Multiple-Time-Scale Dynamical Systems, Springer-Verlag, IMA Vol. Math. Appl., vol 122, pp 117–140

    Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35: 193–213

    Article  Google Scholar 

  • Nowacki J, Mazlan S, Osinga HM, Tsaneva-Atanasova K (2010) The role of large-conductance calcium-activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D 239:485–493

    Article  MATH  MathSciNet  Google Scholar 

  • Nunemaker CS, DeFazio RA, Moenter SM (2001) Estradiol-sensitive afferents modulate long-term episodic firing patterns of GnRH neurons. Endocrinology 143:2284–2292

    Article  Google Scholar 

  • Osinga HM, Sherman A, Tsaneva-Atanasova K (2012) Cross-currents between biology and mathematics: The codimension of pseudo-plateau bursting. Discret Contin Dyn S 32:2853–2877

    Article  MATH  MathSciNet  Google Scholar 

  • Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Lecture Notes in Biomathematics, vol 71, Springer, pp 267–281

    Google Scholar 

  • Rinzel J, Lee YS (1985) On different mechanisms for membrane potential bursting. In: Othmer HG (ed) Nonlinear Oscilations in Biology, vol 66, Springer-Verlag, pp 19–33

    Google Scholar 

  • Rinzel J, Keizer J, Li YX (1996) Modeling plasma membrane and endoplasmic reticulum excitability in pituitary cells. Trends Endocrinol Metab 7:388–393

    Article  Google Scholar 

  • Rossoni E, Feng J, Tirozzi B, Brown D, Leng G, Moos F (2008) Emergent synchronous bursting of oxytocin neuronal network. PLoS Comp Biol 4(7):1000123

    Article  MathSciNet  Google Scholar 

  • Rubin J, Wechselberger M (2007) Giant squid-hidden canard: The 3D geometry of the Hodgkin-Huxley model. Biol Cybern 97:5–32

    Article  MATH  MathSciNet  Google Scholar 

  • Rubin J, Wechselberger M (2008) The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Chaos 18:015105

    Article  MathSciNet  Google Scholar 

  • Shangold GA, Murphy SN, Miller RJ (1988) Gonadotropin-releasing hormone-induced Ca2+ transients in single identified gonadotropes require both intracellular Ca2+ mobilization and Ca2+ influx. Proc Natl Acad Sci USA 85:6566–6570

    Article  Google Scholar 

  • Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) Dynamic clamp–computer-generated conductances in real neurons. J Neurophysiol 69:992–995

    Google Scholar 

  • Sherman A, Keizer J, Rinzel J (1990) Domain model for Ca2+-inactivation of Ca2+ channels at low channel density. Biophys J 58:985–995

    Article  Google Scholar 

  • Sherman A, Li YX, Keizer JE (2002) Whole-cell models. In: Fall CP, Marland ES, Wagner JM, Tyson JJ (eds) Computational Cell Biology, 1st edn, Springer, pp 101–139

    Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K, Bruce JIE, Straub SV, Giovannucci DR, Yule DI (2003) A model of calcium waves in pancreatic and parotid acinar cells. Biophys J 85:1392–1405

    Article  Google Scholar 

  • Sneyd J, Tsaneva-Atanasova K, Reznikov V, Sanderson MJ, Yule DI (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci USA 103:1675–1680

    Article  Google Scholar 

  • Stern JV, Osinga HM, LeBeau A, Sherman A (2008) Resetting behavior in a model of bursting in secretory pituitary cells: Distinguishing plateaus from pseudo-plateaus. Bull Math Biol 70:68–88

    Article  MATH  MathSciNet  Google Scholar 

  • Stojilković SS, Tomić M (1996) GnRH-induced calcium and current oscillations in gonadotrophs. Trends Endocrinol Metab 7:379–384

    Article  Google Scholar 

  • Stojilković SS, Kukuljan M, Iida T, Rojas E, Catt KJ (1992) Integration of cytoplasmic calcium and membrane potential oscillations maintains calcium signaling in pituitary gonadotrophs. Proc Natl Acad Sci USA 89:4081–4085

    Article  Google Scholar 

  • Stojilković SS, Kukuljan M, Tomić M, Rojas E, Catt KJ (1993) Mechanism of agonist-induced [Ca2+] i oscillations in pituitary gonadotrophs. J Biol Chem 268:7713–7720

    Google Scholar 

  • Stojilković SS, Tabak J, Bertram R (2010) Ion channels and signaling in the pituitary gland. Endocr Rev 31:845–915

    Article  Google Scholar 

  • Szmolyan P, Wechselberger M (2001) Canards in \(\mathbb{R}^{3}\). J Diff Eq 177:419–453

    Article  MATH  MathSciNet  Google Scholar 

  • Szmolyan P, Wechselberger M (2004) Relaxation oscillations in \(\mathbb{R}^{3}\). J Diff Eq 200:69–144

    Article  MATH  MathSciNet  Google Scholar 

  • Tabak J, Toporikova N, Freeman ME, Bertram R (2007) Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J Comput Neurosci 22:211–222

    Article  MathSciNet  Google Scholar 

  • Tabak J, Tomaiuolo M, Gonzalez-Iglesias AE, Milescu LS, Bertram R (2011) Fast-activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: A dynamic clamp study. J Neurosci 31:16,855–16,863

    Article  Google Scholar 

  • Teka W, Tabak J, Vo T, Wechselberger M, Bertram R (2011a) The dynamics underlying pseudo-plateau bursting in a pituitary cell model. J Math Neurosci 1:12, DOI 10.1186/2190-8567-1-12

    Article  MathSciNet  Google Scholar 

  • Teka W, Tsaneva-Atanasova K, Bertram R, Tabak J (2011b) From plateau to pseudo-plateau bursting: Making the transition. Bull Math Biol 73:1292–1311

    Article  MATH  MathSciNet  Google Scholar 

  • Teka W, Tabak J, Bertram R (2012) The relationship between two fast-slow analysis techniques for bursting oscillations. Chaos 22, DOI 10.1063/1.4766943

  • Tomaiuolo M, Bertram R, Leng G, Tabak J (2012) Models of electrical activity: calibration and prediction testing on the same cell. Biophys J 103:2021–2032

    Article  Google Scholar 

  • Toporikova N, Tabak J, Freeman ME, Bertram R (2008) A-type K + current can act as a trigger for bursting in the absence of a slow variable. Neural Comput 20:436–451

    Article  MATH  MathSciNet  Google Scholar 

  • Tsaneva-Atanasova K, Sherman A, Van Goor F, Stojilković SS (2007) Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: Experiments and theory. J Neurophysiol 98:131–144

    Article  Google Scholar 

  • Tse A, Hille B (1992) GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science 255:462–464

    Article  Google Scholar 

  • Tse FW, Tse A, Hille B (1994) Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc Natl Acad Sci USA 91:9750–9754

    Article  Google Scholar 

  • Tse FW, Tse A, Hille B, Horstmann H, Almers W (1997) Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron 18:121–132

    Article  Google Scholar 

  • Van Goor F, Li YX, Stojilković SS (2001a) Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J Neurosci 21:5902–5915

    Google Scholar 

  • Van Goor F, Zivadinovic D, Martinez-Fuentes AJ, Stojilković SS (2001b) Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell-type specific action potential secretion coupling. J Biol Chem 276:33,840–33,846

    Google Scholar 

  • Vo T, Bertram R, Tabak J, Wechselberger M (2010) Mixed mode oscillations as a mechanism for pseudo-plateau bursting. J Comput Neurosci 28:443–458

    Article  MATH  MathSciNet  Google Scholar 

  • Vo T, Bertram R, Wechselberger M (2012) Bifurcations of canard-induced mixed mode oscillations in a pituitary lactotroph model. Discret Contin Dyn S 32:2879–2912

    Article  MATH  MathSciNet  Google Scholar 

  • Wechselberger M (2005) Existence and bifurcation of canards in \(\mathbb{R}^{3}\) in the case of a folded node. SIAM J Dyn Syst 4:101–139

    Article  MATH  MathSciNet  Google Scholar 

  • Wechselberger M (2012) A propos de canards (apropos canards). Trans Am Math Sci 364: 3289–3309

    Article  MATH  MathSciNet  Google Scholar 

  • Wechselberger M, Weckesser W (2009) Bifurcations of mixed-mode oscillations in a stellate cell model. Physica D 238:1598–1614

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grants DMS 0917664 to RB, DMS 1220063 to RB and JT, and NIH grant DK 043200 to RB and JT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bertram .

8 Appendix

8 Appendix

Computer codes for all models discussed in this chapter are available as freeware from http://www.math.fsu.edu/~bertram/software/pituitary.

1.1 8.1 The Chay-Keizer Model

The Chay-Keizer model for bursting in the pancreatic β-cell (Chay and Keizer (1983)) was one of the first bursting models analyzed using a fast/slow analysis technique (Rinzel and Lee (1985)). A modified form of the model was used in Teka et al. (2011b) to analyze the transition between plateau and pseudo-plateau bursting, and was used for this purpose in Fig. 4. The modified Chay-Keizer model is similar in many ways to the lactotroph model used in most of this article. The differential equations are:

$$\displaystyle\begin{array}{rcl} C_{m}\frac{dV } {dt} & =& -[I_{Ca}(V ) + I_{K}(V,n) + I_{SK}(V,c) + I_{K(ATP)}(V )]{}\end{array}$$
(1.79)
$$\displaystyle\begin{array}{rcl} \frac{dn} {dt} & =& \frac{n_{\infty }(V ) - n} {\tau _{n}} {}\end{array}$$
(1.80)
$$\displaystyle\begin{array}{rcl} \frac{dc} {dt}& =& -f_{c}(\alpha I_{Ca}(V ) + k_{c}c).{}\end{array}$$
(1.81)

where in place of the V -dependent BK K+ current there is a K+ current whose conductance is regulated by intracellular levels of ATP. If, as assumed here, the ATP concentration is constant, then g K(ATP) is a constant-conductance K+ current given by

$$\displaystyle{ I_{K(ATP)}(V ) = g_{K(ATP)}(V - V _{K})\;\;. }$$
(1.82)

The form of the steady state activation curves \(m_{\infty }(V )\) and \(n_{\infty }(V )\) are the same as for the lactotroph model (Eqs. 1.51.7). The steady state activation function for the SK current is a third-order Hill function, rather than second-order:

$$\displaystyle{ s_{\infty }(c) = \frac{c^{3}} {c^{3} + K_{d}^{3}}. }$$
(1.83)

Parameter values for this model are given in Table 3.

Table 3 Parameter values for the simplified Chay-Keizer model

1.2 8.2 The Lactotroph Model with an A-Type K+ Current

An alternate lactotroph model was developed by Toporikova et al. (2008) and analyzed in Vo et al. (2010) and Vo et al. (2012). In this model, the equation for intracellular Ca2+ concentration is removed, as are the SK and BK currents. Instead, an A-type K+ current is included that activates instantaneously and inactivates on a slower time scale. The differential equations are:

$$\displaystyle\begin{array}{rcl} C_{m}\frac{dV } {dt} & =& -[I_{Ca}(V ) + I_{K}(V,n) + I_{A}(V,e) + I_{L}(V )]{}\end{array}$$
(1.84)
$$\displaystyle\begin{array}{rcl} \frac{dn} {dt} & =& \frac{n_{\infty }(V ) - n} {\tau _{n}} {}\end{array}$$
(1.85)
$$\displaystyle\begin{array}{rcl} \frac{de} {dt}& =& \frac{e_{\infty }(V ) - e} {\tau _{e}} \;\;.{}\end{array}$$
(1.86)

where the I Ca and I K currents are as before, I L is a constant-conductance leakage current, and I A is the A-type K+ current:

$$\displaystyle\begin{array}{rcl} I_{L}(V )& =& g_{L}(V - V _{K}){}\end{array}$$
(1.87)
$$\displaystyle\begin{array}{rcl} I_{A}(V,e)& =& g_{A}a_{\infty }e(V - V _{K})\;\;.{}\end{array}$$
(1.88)

The activation function for I A  is

$$\displaystyle{ a_{\infty }(V ) = \left (1 +\exp (\frac{v_{a} - V } {s_{a}} )\right )^{-1} }$$
(1.89)

and the inactivation function is

$$\displaystyle{ e_{\infty }(V ) = \left (1 +\exp (\frac{V - v_{e}} {s_{e}} )\right )^{-1}\;\;. }$$
(1.90)

Parameter values are given in Table 4.

Table 4 Parameter values for the lactotroph model with A-type K+ current

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bertram, R., Tabak, J., Teka, W., Vo, T., Wechselberger, M. (2015). Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells. In: Mathematical Analysis of Complex Cellular Activity. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-18114-1_1

Download citation

Publish with us

Policies and ethics