Automatic Dialogue Act Annotation within Arabic Debates

  • Samira Ben Dbabis
  • Hatem Ghorbel
  • Lamia Hadrich Belguith
  • Mohamed Kallel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9041)


Dialogue acts play an important role in the identification of argumentative discourse structure in human conversations. In this paper, we propose an automatic dialogue acts annotation method based on supervised learning techniques for Arabic debates programs. The choice of this kind of corpora is justified by its large content of argumentative information. To experiment annotation results, we used a specific annotation scheme relatively reliable for our task with a kappa agreement of 84%. The annotation process was yield using Weka platform algorithms experimenting Naive Bayes, SVM and Decision Trees classifiers. We obtained encouraging results with an average accuracy of 53%.


Dialogue act annotation argumentative scheme Arabic debates supervised learning classifiers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A., Bader, M., Bard, E., Boyle, E., Doherty, G.: The HCRC Map Task Corpus. Language and Speech 34, 351–366 (1991)Google Scholar
  2. 2.
    Carletta, J., Isard, A., Isard, S., Kowtko, J., Doherty-Sneddon, G., Anderson, A.: The reliability of a dialogue structure coding scheme. Computational Linguistics 23, 13–31 (1997)Google Scholar
  3. 3.
    Walker, M.A., Moore, J.D.: Empirical Studies in Discourse. Computational Linguistics 20(2) (1997)Google Scholar
  4. 4.
    Allen, J., Core, M.: Draft of DAMSL: Dialog Act Markup in Several Layers. Technical report (January 1997)Google Scholar
  5. 5.
    Jurafsky, D., Bates, R., Coccaro, N., Martin, R., Meteer, M., Ries, K., Shriberg, E., Stolcke, A., Taylor, P., Van Ess-Dykema, C.: Automatic Detection of Discourse Structure for Speech Recognition and Understanding. In: Proceedings of the 1997 IEEE Workshop on Speech Recognition and Understanding, Santa Barbara (1997)Google Scholar
  6. 6.
    Bunt, H.: Dimensions in dialogue annotation. In: Proceedings of LREC 2006 (2006)Google Scholar
  7. 7.
    Bunt, H.: The DIT++ taxonomy for functional dialogue markup. In: Heylen, D., Pelachaud, C., Catizone, R., Traum, D. (eds.) Proceedings of the AAMAS 2009 Workshop Towards a Standard Markup Language for Embodied Dialogue Acts (EDAML 2009), Budapest, May 12 (2009)Google Scholar
  8. 8.
    Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)CrossRefGoogle Scholar
  9. 9.
    Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin, R., Van Ess-Dykema, C., Meteer, M.: Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech. Computational Linguistics 26(3), 339–373 (2000)CrossRefGoogle Scholar
  10. 10.
    Singh, S., Kearns, M., Litman, D., Walker, M.: Reinforcement learning for spoken dialogue systems. Advances in Neural Information Processing Systems 12, 956–962 (1999)Google Scholar
  11. 11.
    Martınez-Hinarejos, C.D., Benedı, J.M., Granell, R.: Statistical framework for a Spanish spoken dialogue corpus. Speech Communication 50, 992–1008 (2008)CrossRefGoogle Scholar
  12. 12.
    Bangalore, S., Di Fabbrizio, G., Stent, A.: Learning the structure of task-driven human–human dialogs. In: Proceedings of ACL, Sydney, Australia, pp. 201–208 (2006)Google Scholar
  13. 13.
    Rangarajan Sridhar, V.K., Bangalore, S., Narayanan, S.: Exploiting acoustic and syntactic features for prosody labeling in a maximum entropy framework. In: Proceedings of NAACL-HLT (2007)Google Scholar
  14. 14.
    Webb, N., Hepple, M., Wilks, Y.: Dialogue act classification based on intra-utterance features. In: Proceedings of the AAAI Workshop on Spoken Language Understanding, Pittsburgh, PA (2005)Google Scholar
  15. 15.
    Hoque, M.E., Sorower, M.S., Yeasin, M., Louwerse, M.M.: What Speech Tells us about Discourse: The Role of Prosodic and Discourse Features in Dialogue Act Classification. In: IEEE International Joint Conference on Neural Networks (IJCNN), Orlando, FL (August 2007)Google Scholar
  16. 16.
    Bangalore, S., Di Fabbrizio, G., Stent, A.: Learning the structure of task-driven human–human dialogs. IEEE Transactions on Audio, Speech, and Language Processing 16(7), 1249–1259 (2008)CrossRefGoogle Scholar
  17. 17.
    Di Eugenio, B., Xie, Z., Serafin, R.: Dialogue act classification, higher order dialogue structure, and instance-based learning. Dialogue & Discourse 1(2), 1–24 (2010a)CrossRefGoogle Scholar
  18. 18.
    Core, M., Allen, J.: Coding Dialogs with the DAMSL annotation scheme. In: AAAI Fall Symposium on Communicative Action in Humans and Machines. MIT, Cambridge (1997)Google Scholar
  19. 19.
    Levin, L., Thymé-Gobbell, A., Lavie, A., Ries, K., Zechner, K.: A discourse coding scheme for conversational Spanish. In: Fifth International Conference on Spoken Language Processing (1998)Google Scholar
  20. 20.
    Ries, K.: HMM and neural network based speech act detection. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Phoenix, AZ, pp. 497–500 (1999)Google Scholar
  21. 21.
    Shala, L., Rus, V., Graesser, A.C.: Automated speech act classification in Arabic. Subjetividad y Procesos Cognitivos 14, 284–292 (2010)Google Scholar
  22. 22.
    Grosz, B., Sidner, C.: Attention, Intentions, and the Structure of Discourse. Computational Linguistics 19(3) (1986)Google Scholar
  23. 23.
    Schegloff, E.A., Sacks, H.: Opening Up Closings. Semiotica 7, 289–327 (1973)Google Scholar
  24. 24.
    Pallotta, V., Ghorbel, H., Ruch, P., Coray, G.: An argumentative annotation schema for meeting discussions. In: Proceedings of the 4th International Conference on Language Resources (LREC 2004), Lisbon, Portugal, May 26-28, pp. 1003–1006 (2004)Google Scholar
  25. 25.
    Galley, M., McKeown, K., Hirschberg, J., Shriberg, E.: Identifying agreement and disagreement in conversational speech: Use of bayesian networks to model pragmatic dependencies. In ACL 2004, Barcelona (2004)Google Scholar
  26. 26.
    Kunz, W., Rittel, H.W.J.: Issues as elements of information systems. Technical Report WP-131, Berkeley: University of California (1970)Google Scholar
  27. 27.
    Ben Dbabis, S., Mallek, F., Ghorbel, H., Belguith, L.: Dialogue Acts Annotation Scheme within Arabic discussions. In: Sixteenth Workshop on the Semantics and Pragmatics of Dialogue (SemDial 2012), Paris, France, September 19-21 (2012)Google Scholar
  28. 28.
    Carletta, J.C.: Assessing agreement on classification tasks: the kappa statistic. Computational Linguistics 22(2), 249–254 (1996)Google Scholar
  29. 29.
    Sridar, V.K.R., Bangalore, S., Narayanan, S.S.: Combining lexical, syntactic and prosodic cues for improved online dialog act tagging. Computer Speech & Language 23(4), 407–422 (2009)CrossRefGoogle Scholar
  30. 30.
    Kim, S.N., Cavedon, L., Baldwin2010, T.: Classifying dialogue acts in one-on-one live chats. In: Proceedings of EMNLP 2010, the Conference on Empirical Methods in Natural Language Processing, pp. 862–871. Association for Computational Linguistics (2010)Google Scholar
  31. 31.
    Boyer, K.E., Grafsgaard, J.F., Ha, E.Y., Phillips, R., Lester, J.C.: An affect-enriched dialogue act classification model for task-oriented dialogue. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-, vol. 1, pp. 1190–1199. Association for Computational Linguistics (2011)Google Scholar
  32. 32.
    Ha, E.Y., Grafsgaard, J.F., Mitchell, C., Boyer, K.E., Lester, J.C.: Combining verbal and nonverbal features to overcome the “information gap” in taskoriented dialogue. In: Proceedings of SIGdial 2012, the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Seoul, South Korea, pp. 247–256. Association for Computational Linguistics (July 2012)Google Scholar
  33. 33.
    Kim, S.N., Cavedon, L., Baldwin, T.: Classifying dialogue acts in multi-party live chats. In: Proceedings of the 26th Pacific Asia Conference on Language, Information, and Computation, Bali, Indonesia, pp. 463–472. Faculty of Computer Science, Universitas Indonesia (2012)Google Scholar
  34. 34.
    Habash, N., Rambow, O., Roth, R.: MADA+TOKAN: A Toolkit for Arabic Tokenization, Diacritization, Morphological Disambiguation, POS Tagging, Stemming and Lemmatization. In: Proceedings of the 2nd International Conference on Arabic Language Resources and Tools (MEDAR), Cairo, Egypt (2009)Google Scholar
  35. 35.
    Ivanovic, E.: Automatic instant messaging dialogue using statistical models and dialogue acts. Master’s thesis, University of Melbourne (2008)Google Scholar
  36. 36.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Samira Ben Dbabis
    • 1
  • Hatem Ghorbel
    • 2
  • Lamia Hadrich Belguith
    • 1
  • Mohamed Kallel
    • 3
  1. 1.ANLP Research Group, MIRACL LaboratoryUniversity of SfaxSfaxTunisia
  2. 2.University of Applied Science of West Switzerland HE-Arc IngénierieDelémontSwitzerland
  3. 3.Faculty of Letters and Human SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations