On Analytical Methods for Cancer Research

  • Stefan Giebel
  • Philipp Hermann
  • Jens-Peter Schenk
  • Milan StehlíkEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 136)


The use of image recognition and classification of objects according to images is becoming extremely popular, especially in the field of medicine. A mathematical procedure allows us, not only to evaluate the amount of data per se, but also ensures that each image is processed similarly. Our study has two focal points: The first one is the automated data entry and the second one is the evaluation in a manageable way. We propose the use of mathematical procedures to support the applicants in their evaluation of magnetic resonance images (MRI) of renal tumours. Therapy of renal tumours in childhood based on therapy optimizing SIOP (Society of Pediatric Oncology and Hematology)-study protocols in Europe. The most frequent tumour is the nephroblastoma (over 80 %). Other tumour entities in the retroperitoneum are clear cell sarcoma, renal cell carcinoma and extrarenal tumours, especially neuroblastoma. Radiological diagnosis is produced with the help of cross sectional imaging methods (computer tomography CT or Magnetic Resonance Images MRI). Our research is the first mathematical approach on MRI of retroperitoneal tumours for transversal images (of 40 patients). We use MRI in 3 planes and evaluate their potential to differentiate other types of tumours. We determine the key points or three dimensional landmarks of retroperitoneal tumours in childhood by using the edges of the platonic body (C60) and test the difference between the groups (nephroblastoma versus non-nephroblastoma). The size is not eliminated like in former studies. All objects are comparable. For other important references see [1, 4, 9].


Diagnostics Discrimination Landmarks Renal tumours Wilms tumours 



The research received partial support from the WTZ Project No. IN 11/2011 “Thermal modelling of cancer”. We also thank the editor and reviewers, whose insightful comments helped us to sharpen the paper considerably.


  1. 1.
    Furtwängler, R., Schenk, J.P., Reinhard, H., et al.: Nephroblastom- Wilms-Tumor. Onkologie 11(1) (2005)Google Scholar
  2. 2.
    Giebel, S.: Statistical analysis of the shape of renal tumors in childhood. Diploma thesis, University Kassel (2007)Google Scholar
  3. 3.
    Graf, N., Semler, O., Reinhard, H.: Die Prognose des Wilms-Tumors im Verlauf der SIOP-Studien. Der Urologe, Ausgabe A 43(4), 421–428 (2004)Google Scholar
  4. 4.
    Günther, P., Schenk, J.P., Wunsch, R., Tröger, J., Waag, K.L.: Abdominal tumours in children: 3-D visualisation and surgical planning. Eur. J. Pediatr. Surg. 14(5), 316–321 (2004)Google Scholar
  5. 5.
    McCarthy, M.: PSA screening said to reduce prostate cancer deaths, or does it? Lancet 351, 1563 (1998)CrossRefGoogle Scholar
  6. 6.
    Ratto, C., Sofo, L., Ippoliti, M., Merico, M., Doglietto, G.B., Crucitti, F.: Prognostic factors in colorectal cancer. Literature review for clinical application. Dis. Colon Rectum 41, 1033–1049 (1998)CrossRefGoogle Scholar
  7. 7.
    Schenk, J.P., Graf, N., Günther, P., Ley, S., Göppl, M., Kulozik, A., Rohrschneider, W.K., Tröger, J.: Role of MRI in the management of patients with nephroblastoma. Eur. Radiol. 18(4), 683–691 (2008)Google Scholar
  8. 8.
    Schenk, J.P., Schrader, C., Zieger, B., Furtwängler, R., Leuschner, I., Ley, S., Graf, N., Tröger J.: Reference radiology in nephroblastoma: accuracy and relevance for preoperative chemotherapy. Rofo 178(1), 38–45 (2006)Google Scholar
  9. 9.
    Schenk, J.P., Waag, K.L., Graf, N., Wunsch, R., Jourdan, C., Behnisch, W., Tröger J., Günther, P.: 3D-visualization by MRI for surgical planning of Wilms tumors. Rofo 176(10), 1447–1452 (2004)Google Scholar
  10. 10.
    Wilms, M.: Die Mischgeschwülste der Niere, pp. 1–90. Verlag von Arthur Georgi, Leipzig (1889)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Giebel
    • 1
  • Philipp Hermann
    • 2
  • Jens-Peter Schenk
    • 4
  • Milan Stehlík
    • 2
    • 3
    Email author
  1. 1.University of LuxembourgLuxembourgLuxembourg
  2. 2.Department of Applied StatisticsJohannes-Kepler-University LinzLinzAustria
  3. 3.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  4. 4.Department of Diagnostic and Interventional RadiologyUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations