Some Estimation Techniques in Reliability and Survival Analysis Based on Record-Breaking Data

  • Inmaculada Barranco-ChamorroEmail author
  • Sneh Gulati
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 136)


In this paper we review some of the classical and Bayesian results on statistical inference from records that can be used in reliability and survival analysis. We focus on some important lifetime models, giving special attention to heavy-tailed distributions in order to consider applications of record-breaking data to the study of extreme events. Results on the estimation of the number of observations needed to attain a given number of records are also studied in depth. Numerical illustrations and results on the estimation of cost functions are included as well. This chapter can serve as a guide for people interested in making inferences in the fields of reliability and survival analysis when only record values are available.


Record values Heavy tailed distributions Classical inference Bayesian inference Sample-size estimation 



The authors thank the referees for their constructive suggestions, which helped to improve the presentation of the paper. Barranco-Chamorro’s research was supported by grant UJA2013/08/01.


  1. 1.
    Ahmadi, J., Doostparast, M.: Bayesian estimation and prediction for some life distributions based on record values. Stat. Pap. 47, 373–392 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ahsanullah, M.: Record Values. Theory and Applications. University Press of America, Lanham (2004)Google Scholar
  3. 3.
    AL-Hussaini, E.K., Ahmad, A.E.: On Bayesian interval prediction of future records. Test 12(1), 79–99 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Arnold, B.C., Press, S.J.: Bayesian inference for Pareto populations. J. Econom. 21, 287–306 (1983)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Arnold, B.C., Balakrishnan, N., Nagaraja, N.: Records. Wiley, New York (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Balakrishnan, N., Ahsanullah, M.: Recurrence relations for single and product moments of record values from generalized Pareto distribution. Commun. Stat.: Theory Methods 23(10), 2841–2852 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Balakrishnan, N., Cohen, A.C.: Order Statistics and Inference: Estimation Methods. Academic Press, San Diego (1991)zbMATHGoogle Scholar
  8. 8.
    Chandler, K.N.: The distribution and frequency of record values. J. R. Stat. Soc. Ser. B 14(2), 220–228 (1952)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Cramer, E.: Asymptotic estimators of the sample size in a record model. Stat. Pap. 41(2), 159–171 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chan, P.S.: Interval estimation of location and scale parameters based on record values. Stat. Probab. Lett. 37(1), 49–58 (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gulati, S., Padget, W.J.: Parametric and Nonparametric Inference from Record-Breaking Data. Lecture Notes in Statistics, vol. 172. Springer, Berlin (2003)Google Scholar
  12. 12.
    Gulati, S., Shapiro, S.S.: Goodness of fit tests for the Pareto distribution. In: Vonta, F., Nikulin, M., Limnios, N., Huber, C. (eds.) Statistical Models and Methods for Biomedical and Technical Systems, pp. 263–277. Birkhauser, Boston (2008)Google Scholar
  13. 13.
    Gupta, R.D., Kundu, D.: Generalized exponential distribution. Aust. N. Z. J. Stat. 41(2), 173–188 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Johnson, R.: Record values and surviving glacial moraines. Teach. Stat. 25(3), 66–69 (2003)CrossRefGoogle Scholar
  15. 15.
    Lai, C.D., Xie, M., Murthy, D.N.: A modified Weibull distribution. IEEE Trans. Reliab. 52, 33–37 (2003)CrossRefGoogle Scholar
  16. 16.
    Madi, M.T., Raqab, M.Z.: Bayesian prediction of temperatures using the Pareto model. Environmetrics 15, 701–710 (2004)CrossRefGoogle Scholar
  17. 17.
    Moreno-Rebollo, J.L., Barranco-Chamorro, I., López-Blázquez, F., Gómez-Gómez, T.: On the estimation of the unknown sample size from the number of the records. Stat. Probab. Lett. 31, 7–12 (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Moreno-Rebollo, J.L., López-Blázquez, F., Barranco-Chamorro, I., Pascual-Acosta, A.: Estimating the unknown sample size. J. Stat. Plan. Inference 83, 311–318 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nelson, W.B.: Accelerated Testing-Statistical Models, Test Plans, and Data Analysis. Wiley, New York (2004)Google Scholar
  20. 20.
    Nevzorov, V.B., Balakrishnan, N.: A record of records. In: Handbook of Statistics-16: Order Statistics: Theory and Methods, pp. 515–570. North-Holland, Amsterdam (1998)Google Scholar
  21. 21.
    Pfeifer, D.: Some remarks on Nevzorov’s record model. Adv. Appl. Probab. 23, 823–834 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Raqab, M.: Inferences for generalized exponential distribution based on record statistics. J. Stat. Plan. Inference 104, 339–350 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Roberts, E.M.: Review of statistics of extreme values with application to air quality data. Part II. Applications J. Air Pollut. Control Assoc. 29, 733–740 (1979)CrossRefGoogle Scholar
  24. 24.
    Soh Fotsing, B.D., Anago, G.F., Fogue, M.: Statistical techniques of sample size estimating in fatigue tests. Int. J. Eng. Technol. 2(6), 477–481 (2010)Google Scholar
  25. 25.
    Soliman, A.A., Abd Ellah, A.H., Sultan, K.S.: Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches. Comput. Stat. Data Anal. 51, 2065–2077 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Sultan, K.S.: Record values from the modified Weibull distribution and applications. Int. Math. Forum 2(41), 2045–2054 (2007)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Sultan, K.S., Moshref, M.E.: Record values from generalized Pareto distribution and associated inference. Metrika 51, 105–116 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departamento de Estadistica e I.O. Facultad de MatematicasUniversidad de SevillaSevillaSpain
  2. 2.Department of Mathematics and StatisticsFlorida International UniversityMiamiUSA

Personalised recommendations