Skip to main content

Learning Value Heuristics for Constraint Programming

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2015)

Abstract

Search heuristics are of paramount importance for finding good solutions to optimization problems quickly. Manually designing problem specific search heuristics is a time consuming process and requires expert knowledge from the user. Thus there is great interest in developing autonomous search heuristics which work well for a wide variety of problems. Various autonomous search heuristics already exist, such as first fail, domwdeg and impact based search. However, such heuristics are often more focused on the variable selection, i.e., picking important variables to branch on to make the search tree smaller, rather than the value selection, i.e., ordering the subtrees so that the good subtrees are explored first. In this paper, we define a framework for learning value heuristics, by combining a scoring function, feature selection, and machine learning algorithm. We demonstrate that we can learn value heuristics that perform better than random value heuristics, and for some problem classes, the learned heuristics are comparable in performance to manually designed value heuristics. We also show that value heuristics using features beyond a simple score can be valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)

    Article  Google Scholar 

  2. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference, DAC 2001, pp. 530–535. ACM, Las Vegas, June 18–22, 2001

    Google Scholar 

  3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, Including Prestigious Applicants of Intelligent Systems, PAIS 2004, pp. 146–150. IOS Press, Valencia (2004)

    Google Scholar 

  4. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered search heuristics. Constraints 14, 392–413 (2009)

    Article  MathSciNet  Google Scholar 

  6. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, E. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Benichou, M., Gauthier, J., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.: Experiments in mixed-integer programming. Mathematical Programming 1, 76–94 (1971)

    Article  MathSciNet  Google Scholar 

  9. Linderoth, J., Savelsbergh, M.: A computational study of search strategies for mixed integer programming. INFORMS Journal of Computing 11 (1999)

    Google Scholar 

  10. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. CoRR abs/1210.7959 (2012)

    Google Scholar 

  11. Amemiya, T.: Advanced Econometrics. Harvard University Press (1985)

    Google Scholar 

  12. Wold, H.: Estimation of principal components and related models by iterative least squares. In: Multivariate Analysis, pp. 391–420. Academic Press (1966)

    Google Scholar 

  13. Chu, G., Stuckey, P.J.: Minimizing the maximum number of open stacks by customer search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 242–257. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Garcia de la Banda, M., Stuckey, P., Chu, G.: Solving talent scheduling with dynamic programming. INFORMS Journal of Computing 23, 120–137 (2011)

    Article  MathSciNet  Google Scholar 

  16. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propagator. Constraints 16, 250–282 (2011)

    Article  MathSciNet  Google Scholar 

  17. Miller, H., Pierskalla, W., Rath, G.: Nurse scheduling using mathematical programming. Operations Research, 857–870 (1976)

    Google Scholar 

  18. Dincbas, M., Simonis, H., Van Hentenryck, P.: Solving the car-sequencing problem in constraint logic programming. In: ECAI, vol. 88, pp. 290–295 (1988)

    Google Scholar 

  19. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for resource constrained project scheduling. European Journal of Operational Research 127, 394–407 (2000)

    Article  Google Scholar 

  20. Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Savage, L.: The theory of statistical decision. Journal of the American Statistical Association 46 (1951)

    Google Scholar 

  22. Allouche, D., de Givry, S., Schiex, T.: Toulbar2, an open source exact cost function network solver. Technical report, INRIA (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chu, G., Stuckey, P.J. (2015). Learning Value Heuristics for Constraint Programming. In: Michel, L. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science(), vol 9075. Springer, Cham. https://doi.org/10.1007/978-3-319-18008-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18008-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18007-6

  • Online ISBN: 978-3-319-18008-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics