Skip to main content

Embedding Decision Trees and Random Forests in Constraint Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9075))

Abstract

In past papers, we have introduced Empirical Model Learning (EML) as a method to enable Combinatorial Optimization on real world systems that are impervious to classical modeling approaches. The core idea in EML consists in embedding a Machine Learning model in a traditional combinatorial model. So far, the method has been demonstrated by using Neural Networks and Constraint Programming (CP). In this paper we add one more technique to the EML arsenal, by devising methods to embed Decision Trees (DTs) in CP. In particular, we propose three approaches: 1) a simple encoding based on meta-constraints; 2) a method using attribute discretization and a global table constraint; 3) an approach based on converting a DT into a Multi-valued Decision Diagram, which is then fed to an mdd constraint. We finally show how to embed in CP a Random Forest, a powerful type of ensemble classifier based on DTs. The proposed methods are compared in an experimental evaluation, highlighting their strengths and their weaknesses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartolini, A., Cacciari, M., Tilli, A., Benini, L.: Thermal and energy management of high-performance multicores: Distributed and self-calibrating model-predictive controller. IEEE Trans. Parallel Distrib. Syst. 24(1), 170–183 (2013)

    Article  Google Scholar 

  2. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world problems. In: Proc. of CP, pp. 115–129 (2011)

    Google Scholar 

  3. Battiti, R., Brunato, M.: The LION way: Machine Learning plus Intelligent Optimization. University of Trento, LIONlab (2014)

    Google Scholar 

  4. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Proc. of CP, pp. 141–157 (2012)

    Google Scholar 

  5. Bennett, K.P., Parrado-Hernández, E.: The interplay of optimization and machine learning research. Journal of Machine Learning Research 7, 1265–1281 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: Localsolver 1.x: a black-box local-search solver for 0–1 programming. 4OR 9(3), 299–316 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bessière, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in automated constraint acquisition. In: Proc. of CP, pp. 123–137 (2004)

    Google Scholar 

  8. Bessière, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C., Walsh, T.: Constraint acquisition via partial queries. In: Proc. of IJCAI (2013)

    Google Scholar 

  9. Bessière, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acquisition. In: Proc. of IJCAI, pp. 50–55 (2007)

    Google Scholar 

  10. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

    Article  Google Scholar 

  11. Cheng, K.C.K., Yap, R.H.C.: An mdd-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gardi, F., Benoist, T., Darlay, J., Estellon, B., Megel, R.: Mathematical Programming Solver Based on Local Search. John Wiley & Sons (2014)

    Google Scholar 

  13. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc consistency for extensional constraints. In: Proc. of AAAI, pp. 191–197 (2007)

    Google Scholar 

  14. Glover, F., Kelly, J.P., Laguna, M.: New Advances for Wedding optimization and simulation. In: Proc. of WSC, pp. 255–260 (1999)

    Google Scholar 

  15. Gopalakrishnan, K., Asce, A.M.: Neural Network - Swarm Intelligence Hybrid Nonlinear Optimization Algorithm for Pavement Moduli Back-Calculation. Journal of Transportation Engineering 136(6), 528–536 (2009)

    Article  Google Scholar 

  16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD explorations newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  17. Hernando, Leticia, Mendiburu, Alexander, Lozano, Jose A.: Generating Customized Landscapes in Permutation-Based Combinatorial Optimization Problems. In: Nicosia, Giuseppe, Pardalos, Panos (eds.) LION 7. LNCS, vol. 7997, pp. 299–303. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Ho, T.K.: Random decision forests. In: Proc. of ICDAR, p. 278 (1995)

    Google Scholar 

  19. Howard, J., Dighe, S., et al.: A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS. In: Proc. of ISSCC, pp. 108–109, February 2010

    Google Scholar 

  20. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: Methods & evaluation. Artif. Intell. 206, 79–111 (2014)

    Article  MathSciNet  Google Scholar 

  21. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. Journal of Global optimization 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  22. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific algorithm configuration. In: Proc. of ECAI, pp. 751–756 (2010)

    Google Scholar 

  23. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In: Proc. of CP, pp. 379–393 (2007)

    Google Scholar 

  24. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm selection for search problems. AI Commun. 25(3), 257–270 (2012)

    Article  MathSciNet  Google Scholar 

  25. Perron, L.: Operations Research and Constraint Programming at Google. In: Proc. of CP, p. 2 (2011)

    Google Scholar 

  26. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  27. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Proc. of CP, pp. 417–431 (1998)

    Google Scholar 

  28. Sra, S., Nowozin, S., Wright, S.J.: Optimization for machine learning. MIT Press(2012)

    Google Scholar 

  29. Zaabab, A.H., Zhang, Q., Nakhla, M.: A neural network modeling approach to circuit optimization and statistical design. IEEE Transactions on Microwave Theory and Techniques 43(6), 1349–1358 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Bonfietti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonfietti, A., Lombardi, M., Milano, M. (2015). Embedding Decision Trees and Random Forests in Constraint Programming. In: Michel, L. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015. Lecture Notes in Computer Science(), vol 9075. Springer, Cham. https://doi.org/10.1007/978-3-319-18008-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18008-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18007-6

  • Online ISBN: 978-3-319-18008-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics