Advertisement

Understanding the Potential of Propagators

  • Sascha Van CauwelaertEmail author
  • Michele Lombardi
  • Pierre Schaus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9075)

Abstract

Propagation is at the very core of Constraint Programming (CP): it can provide significant performance boosts as long as the search space reduction is not outweighed by the cost for running the propagators. A lot of research effort in the CP community is directed toward improving this trade-off, which for a given type of filtering amounts to reducing the computation cost. This is done chiefly by 1) devising more efficient algorithms or by 2) using on-line control policies to limit the propagator activations. In both cases, obtaining improvements is a long and demanding process with uncertain outcome. We propose a method to assess the potential gain of both approaches before actually starting the endeavor, providing the community with a tool to best direct the research efforts. Our approach is based on instrumenting the constraint solver to collect statistics, and we rely on replaying search trees to obtain more realistic assessments. The overall approach is easy to setup and is showcased on the Energetic Reasoning (ER) and the Revisited Cardinality Reasoning for BinPacking (RCRB) propagators.

Keywords

Constraint programming Propagator Analysis Energetic Reasoning BinPacking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling 17(7), 57–73 (1993)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques for highly disjunctive and highly cumulative project scheduling problems. Constraints 5(1–2), 119–139 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems, vol. 39. Springer (2001)Google Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M.: A new multi-resource \(cumulatives\) constraint with negative heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 63–79. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  5. 5.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathematical and computer Modelling 20(12), 97–123 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bergman, D., Ciré, A.A., van Hoeve, W.J.: MDD propagation for sequence constraints. J. Artif. Intell. Res. (JAIR) 50, 697–722 (2014)zbMATHGoogle Scholar
  7. 7.
    Berthold, T., Heinz, S., Schulz, J.: An approximative criterion for the potential of energetic reasoning. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 229–239. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Bessière, C., Debruyne, R.: Optimal and suboptimal singleton arc consistency algorithms. In: IJCAI-2005, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, pp. 54–59 (2005)Google Scholar
  9. 9.
    Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the Sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  10. 10.
    Van Cauwelaert, S., Lombardi, M., Schaus, P.: Supervised learning to control energetic reasoning: feasibility study. In: Proceedings of the Doctoral Program CP2014 (2014)Google Scholar
  11. 11.
    Cheng, K.C.K., Yap, R.H.C.: An mdd-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Mathematical programming 91(2), 201–213 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time and resources constraints. In: 2nd international workshop on project management and scheduling, pp. 115–121 (1990)Google Scholar
  15. 15.
    Kolisch, R., Schwindt, C., Sprecher, A.: Benchmark instances for project scheduling problems. In: Project Scheduling, pp. 197–212. Springer (1999)Google Scholar
  16. 16.
    Le Pape, C., Couronné, P., Vergamini, D., Gosselin, V.: Time-Versus-Capacity Compromises in Project Scheduling. (1994)Google Scholar
  17. 17.
    OscaR Team. OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
  18. 18.
    Pelsser, F., Schaus, P., Régin, J.-C.: Revisiting the cardinality reasoning for binpacking constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 578–586. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Schaus, P. et al.: Solving balancing and bin-packing problems with constraint programming. PhD thesis, Université catholique de Louvain, Louvain-la-Neuve (2009)Google Scholar
  20. 20.
    Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 648–662. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  21. 21.
    van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg (2006) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sascha Van Cauwelaert
    • 1
    Email author
  • Michele Lombardi
    • 2
  • Pierre Schaus
    • 1
  1. 1.UCLouvainLouvainBelgium
  2. 2.University of BolognaBolognaItaly

Personalised recommendations