Combining Constraint Propagation and Discrete Ellipsoid-Based Search to Solve the Exact Quadratic Knapsack Problem

  • Wen-Yang KuEmail author
  • J. Christopher Beck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9075)


We propose an extension to the discrete ellipsoid-based search (DEBS) to solve the exact quadratic knapsack problem (EQKP), an important class of optimization problem with a number of practical applications. For the first time, our extension enables DEBS to solve convex quadratically constrained problems with linear constraints. We show that adding linear constraint propagation to DEBS results in an algorithm that is able to outperform both the state-of-the-art MIP solver CPLEX and a semi-definite programming approach by about one order of magnitude on two variations of the EQKP.


Linear Constraint Cardinality Constraint Quadratic Objective Function Knapsack Constraint Integer Little Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Létocart, L., Plateau, M.C., Plateau, G.: An efficient hybrid heuristic method for the 0–1 exact k-item quadratic knapsack problem. Pesquisa Operacional 34(1), 49–72 (2014)CrossRefGoogle Scholar
  2. 2.
    Martí, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maximum diversity problem. European Journal of Operational Research 200(1), 36–44 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. INFORMS Journal on Computing 11(2), 125–137 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems with cardinality constraints. European Journal of Operational Research 123(2), 333–345 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Turner, S., Romero, D., Zhang, P., Amon, C., Chan, T.: A new mathematical programming approach to optimize wind farm layouts. Renewable Energy 63, 674–680 (2014)CrossRefGoogle Scholar
  6. 6.
    Zhang, P.Y., Romero, D.A., Beck, J.C., Amon, C.H.: Solving wind farm layout optimization with mixed integer programs and constraint programs. EURO Journal on Computational Optimization 2(3), 195–219 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lewis, M., Alidaee, B., Kochenberger, G.: Using xqx to model and solve the uncapacitated task allocation problem. Operations Research Letters 33(2), 176–182 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bussieck, M.R., Vigerske, S.: MINLP solver software. Wiley Encyclopedia of Operations Research and Management Science. Wiley, Chichester (2010)Google Scholar
  9. 9.
    Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Mathematical Programming 109(1), 55–68 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving max-cut problems to optimality. Mathematical Programming, 1–26 (2012)Google Scholar
  11. 11.
    Teunissen, P.J., Kleusberg, A., Teunissen, P.: GPS for Geodesy, vol. 2. Springer, Berlin (1998)CrossRefGoogle Scholar
  12. 12.
    Ku, W.-Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-cut for binary quadratic programming problems. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 334–350. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems. IEEE Transactions on Wireless Communications 7(1), 277–287 (2008)CrossRefGoogle Scholar
  14. 14.
    Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares problems. SIAM Journal on Matrix Analysis and Applications 31(3), 1071–1089 (2009)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-cut for integer least squares problems. Submitted to IEEE Transactions on Wireless Communications (2014)Google Scholar
  16. 16.
    Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical programming 66(1), 181–199 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Krislock, N., Malick, J., Roupin, F.: BiqCrunch online solver (2012) (Retrieved: 11/06/2014).
  18. 18.
    Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations