Uncertain Data Dependency Constraints in Matrix Models

  • C. GervetEmail author
  • S. GalichetEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9075)


Uncertain data due to imprecise measurements is commonly specified as bounded intervals in a constraint decision or optimization problem. Dependencies do exist among such data, e.g. upper bound on the sum of uncertain production rates per machine, sum of traffic distribution ratios from a router over several links. For tractability reasons existing approaches in constraint programming or robust optimization frameworks assume independence of the data. This assumption is safe, but can lead to large solution spaces, and a loss of problem structure. Thus it cannot be overlooked. In this paper we identify the context of matrix models and show how data dependency constraints over the columns of such matrices can be modeled and handled efficiently in relationship with the decision variables. Matrix models are linear models whereby the matrix cells specify for instance, the duration of production per item, the production rates, or the wage costs, in applications such as production planning, economics, inventory management. Data imprecision applies to the cells of the matrix and the output vector. Our approach contributes the following results: 1) the identification of the context of matrix models with data constraints, 2) an efficient modeling approach of such constraints that suits solvers from multiple paradigms. An illustration of the approach and its benefits are shown on a production planning problem.


Data uncertainty Data constraints Interval reasoning Interval linear programs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benhamou, F.: Inteval constraint logic programming. In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910, pp. 1–21. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  2. 2.
    Benhamou, F., Goualard, F.: Universally quantified interval constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain liner programs. Operations Research Letters 25, 1–13 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bertsimas, D., Brown, D.: Constructing uncertainty sets for robust linear optimization. Operations Research (2009)Google Scholar
  5. 5.
    Bordeaux, L., Monfroy, E.: Beyond NP: Arc-consistency for quantified constraints. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 371–386. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  6. 6.
    Brown, K., Miguel, I.: Chapter 21: uncertainty and change. In: Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  7. 7.
    Cheadle, A.M., Harvey, W., Sadler, A.J., Schimpf, J., Shen, K., Wallace, M.G.: ECLiPSe: An Introduction. Tech. Rep. IC-Parc-03-1, Imperial College London, London, UKGoogle Scholar
  8. 8.
    Chinneck, J.W., Ramadan, K.: Linear programming with interval coefficients. J. Operational Research Society 51(2), 209–220 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: A framework for decision problems under incomplete knowledge. In: Proc. of AAAI-1996 (1996)Google Scholar
  10. 10.
    Gent, I., Nightingale, P., Stergiou, K.: QCSP-solve: A solver for quantified constraint satisfaction problems. In: Proc. of IJCAI (2005)Google Scholar
  11. 11.
    Gervet, C., Galichet, S.: On combining regression analysis and constraint programming. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 284–293. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Inuiguchi, M., Kume, Y.: Goal programming problems with interval coefficients and target intervals. European Journl of Oper. Res. 52 (1991)Google Scholar
  13. 13.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S. Diot, C.: Traffic matrix estimation: existing techniques and new directions. In: Proceedings of ACM SIGCOMM02 (2002)Google Scholar
  14. 14.
    Oettli, W.: On the solution set of a linear system with inaccurate coefficients. J. SIAM: Series B, Numerical Analysis 2(1), 115–118 (1965)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Trans. Computat. Logic 7(4), 723–748 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  17. 17.
    Saad, A., Gervet, C., Abdennadher, S.: Constraint reasoning with uncertain data using CDF-intervals. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 292–306. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Tarim, S., Kingsman, B.: The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. International Journal of Production Economics 88, 105–119 (2004)CrossRefGoogle Scholar
  19. 19.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: A Modeling Language for Global Optimization. The MIT Press, Cambridge Mass (1997) Google Scholar
  20. 20.
    Yorke-Smith, N., Gervet, C.: Certainty closure: Reliable constraint reasoning with uncertain data. In: ACM Transactions on Computational Logic 10(1) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LISTIC, Laboratoire d’Informatique, Systèmes, Traitement de l’Information et de la ConnaissanceUniversité de SavoieAnnecy-Le-Vieux CedexFrance

Personalised recommendations