Skip to main content

Structure, Function and Inhibition of Aromatase

  • Chapter
  • First Online:
Resistance to Aromatase Inhibitors in Breast Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 8))

Abstract

Human cytochrome P450 aromatase catalyzes with high substrate specificity the synthesis of estrogens from androgens. The crystal structure of human aromatase has revealed an androgen-specific active site. The structural insights have been utilized in the investigation of its transmembrane integration, roles of critical residues, reaction mechanism, implications of motion and flexibility on its function, ligand-binding interactions, and oligomeric states. Some of these results provide glimpses into the enzyme function as a membrane-embedded molecule. The structural and chemical basis of steroid-protein interactions have been harnessed to rationally design novel steroidal inhibitors with exclusive aromatase specificity. Several of these compounds exhibit superior inhibitory properties in purified human aromatase when compared with the breast cancer drug exemestane. The antiproliferative potencies of some of these compounds assayed in an MCF-7 breast cancer cell line exceed that of exemestane. The X-ray structures reveal that these new inhibitors exploit previously unknown aromatase-specific interactions. The newly developed structural and chemical biology knowledge lay the foundation for understanding the mechanisms of modulation of enzyme activity upon estrogen-dependent phosphorylation, and novel non-genomic aromatase-estrogen signaling feed-back reported in malignant breast cells as well as in neuroendocrine systems. The structural insights also provide the molecular basis for discovery of next generation inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Androstenedione

AI:

AROM inhibitor

ANZ:

Anastrozole

AROM:

Cytochrome P450 aromatase

CPR:

NADPH cytochrome reductase

E2:

17β-estradiol

ER:

Estrogen receptor

EXM:

Exemestane

LTZ:

Letrozole

mER:

Plasma membrane associated estrogen receptor

NMA:

Normal mode analysis

OR:

Opioid receptor

T:

Testosterone

References

  1. Sigel R, Sigel A, Sigel H. The ubiquitous roles of cytochrome P450 proteins: metal ions in life sciences. New Jersey: Wiley; 2007.

    Book  Google Scholar 

  2. Smith IE, Dowsett M. Aromatase inhibitors in breast cancer. New Engl J Med. 2003;348:2431–42.

    Article  CAS  PubMed  Google Scholar 

  3. Buzdar AU, Robertson JF, Eiermann W, Nabholtz JM. An overview of the pharmacology and pharmacokinetics of the newer generation aromatase inhibitors anastrozole, letrozole, and exemestane. Cancer. 2002;95:2006–16.

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh D, Griswold J, Erman M, Pangborn W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature. 2009;457:219–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jiang W, Ghosh D. Motion and flexibility in human cytochrome P450 aromatase. PloS One. 2012, doi:10.1371/journal.pone.0032565.

  6. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev. 2009;30:343–75.

    Article  CAS  PubMed  Google Scholar 

  7. Simpson E, Jones M, Misso M, Hewitt K, Hill R, Maffei L, Carani C, Boon WC. Estrogen, a fundamental player in energy homeostasis. J Steroid Biochem Mol Biol. 2005;95:3–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ryan KJ. Biological aromatization of steroids. J Biol Chem. 1959;234:268–72.

    CAS  PubMed  Google Scholar 

  9. Szklarz GD, Halpert JR. Use of homology modeling in conjunction with site-directed mutagenesis for analysis of structure-function relationships of mammalian cytochromes P450. Life Sci. 1997;61:2507–20.

    Article  CAS  PubMed  Google Scholar 

  10. Laughton CA, Zvelebil MJ, Neidle S. A detailed molecular model for human aromatase. J Steroid Biochem Mol Biol. 1993;44:399–407.

    Article  CAS  PubMed  Google Scholar 

  11. Favia AD, Cavalli A, Masetti M, Carotti A, Recanatini M. Three-dimensional model of the human aromatase enzyme and density functional parameterization of the iron-containing protoporphyrin IX for a molecular dynamics study of heme-cysteinato cytochromes. Proteins. 2006;62:1074–87.

    Article  CAS  PubMed  Google Scholar 

  12. Karkola S, Holtje HD, Wahala K. A three-dimensional model of CYP19 aromatase for structure-based drug design. J Steroid Biochem Mol Biol. 2007;105:63–70.

    Article  CAS  PubMed  Google Scholar 

  13. Graham-Lorence S, Amarneh B, White RE, Peterson JA, Simpson ER. A three-dimensional model of aromatase cytochrome P450. Protein Sci: A Publ Protein Soc. 1995;4:1065–80.

    Article  CAS  Google Scholar 

  14. Lala P, Higashiyama T, Erman M, Griswold J, Wagner T, Osawa Y, Ghosh D. Suppression of human cytochrome P450 aromatase activity by monoclonal and recombinant antibody fragments and identification of a stable antigenic complex. J Steroid Biochem Mol Biol. 2004;88:235–45.

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh D, Griswold J, Erman M, Pangborn W. X-ray structure of human aromatase reveals an androgen-specific active site. J Steroid Biochem Mol Biol. 2010;118:197–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lo J, Di Nardo G, Griswold J, Egbuta C, Jiang W, Gilardi G, Ghosh D. Structural basis for the functional roles of critical residues in human cytochrome p450 aromatase. Biochemistry. 2013;52:5821–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ghosh D, Lo J, Morton D, Valette D, Xi J, Griswold J, Hubbell S, Egbuta C, Jiang W, An J, Davies HM. Novel aromatase inhibitors by structure-guided design. J Med Chem. 2012;55:8464–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wang A, Savas U, Hsu MH, Stout CD, Johnson EF. Crystal structure of human cytochrome P450 2D6 with prinomastat bound. J Biol Chem. 2012;287:10834–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ekroos M, Sjogren T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Nat Acad Sci USA. 2006;103:13682–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Nat Acad Sci USA. 2011;108:10139–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, Park HW. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol. 2013;27:315–24.

    Article  CAS  PubMed  Google Scholar 

  22. DeVore NM, Scott EE. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature. 2012;482:116–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhao B, Lei L, Kagawa N, Sundaramoorthy M, Banerjee S, Nagy LD, Guengerich FP, Waterman MR. Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J Biol Chem. 2012;287:10613–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Annalora AJ, Goodin DB, Hong WX, Zhang Q, Johnson EF, Stout CD. Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol. 2010;396:441–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Strushkevich N, Usanov SA, Park HW. Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol. 2010;397:1067–78.

    Article  CAS  PubMed  Google Scholar 

  26. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science. 2004;305:683–6.

    Article  CAS  PubMed  Google Scholar 

  27. Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS, Chenery RJ, Bridges AM. Crystal structure of human cytochrome P450 2D6. J Biol Chem. 2006;281:7614–22.

    Article  CAS  PubMed  Google Scholar 

  28. Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s. Biochim Biophys Acta. 2007;1770:390–401.

    Article  CAS  PubMed  Google Scholar 

  29. Akhtar M, Wright JN, Lee-Robichaud P. A review of mechanistic studies on aromatase (CYP19) and 17alpha-hydroxylase-17,20-lyase (CYP17). J Steroid Biochem Mol Biol. 2011;125:2–12.

    Article  CAS  PubMed  Google Scholar 

  30. Hackett JC, Brueggemeier RW, Hadad CM. The final catalytic step of cytochrome p450 aromatase: a density functional theory study. J Am Chem Soc. 2005;127:5224–37.

    Article  CAS  PubMed  Google Scholar 

  31. Akhtar M, Calder MR, Corina DL, Wright JN. Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem J. 1982;201:569–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Sen K, Hackett JC. Coupled electron transfer and proton hopping in the final step of CYP19-catalyzed androgen aromatization. Biochemistry. 2012;51:3039–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kramos B, Olah J. Enolization as an alternative proton delivery pathway in human aromatase (P450 19A1). J Phys Chem B. 2014;118:390–405.

    Article  CAS  PubMed  Google Scholar 

  34. Gantt SL, Denisov IG, Grinkova YV, Sligar SG. The critical iron-oxygen intermediate in human aromatase. Biochem Biophys Res Commun. 2009;387:169–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tosha T, Kagawa N, Ohta T, Yoshioka S, Waterman MR, Kitagawa T. Raman evidence for specific substrate-induced structural changes in the heme pocket of human cytochrome P450 aromatase during the three consecutive oxygen activation steps. Biochemistry. 2006;45:5631–40.

    Article  CAS  PubMed  Google Scholar 

  36. Mak PJ, Luthra A, Sligar SG, Kincaid JR. Resonance Raman spectroscopy of the oxygenated intermediates of human CYP19A1 implicates a compound i intermediate in the final lyase step. J Am Chem Soc. 2014;136:4825–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Khatri Y, Luthra A, Duggal R, Sligar SG. Kinetic solvent isotope effect in steady-state turnover by CYP19A1 suggests involvement of Compound 1 for both hydroxylation and aromatization steps. FEBS Lett. 2014;588:3117–22.

    Article  CAS  PubMed  Google Scholar 

  38. Shimozawa O, Sakaguchi M, Ogawa H, Harada N, Mihara K, Omura T. Core glycosylation of cytochrome P-450(arom). Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen. J Biol Chem. 1993;268:21399–402.

    CAS  PubMed  Google Scholar 

  39. Ghosh D, Pletnev VZ, Zhu DW, Wawrzak Z, Duax WL, Pangborn W, Labrie F, Lin SX. Structure of human estrogenic 17 beta-hydroxysteroid dehydrogenase at 2.20 A resolution. Structure. 1995;3:503–13.

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez-Guzman FG, Higashiyama T, Pangborn W, Osawa Y, Ghosh D. Structure of human estrone sulfatase suggests functional roles of membrane association. J Biol Chem. 2003;278:22989–97.

    Article  CAS  PubMed  Google Scholar 

  41. Sgrignani J, Magistrato A. Influence of the membrane lipophilic environment on the structure and on the substrate access/egress routes of the human aromatase enzyme. A computational study. J Chem Inf Model. 2012;52:1595–606.

    Article  CAS  PubMed  Google Scholar 

  42. Park J, Czapla L, Amaro RE. Molecular simulations of aromatase reveal new insights into the mechanism of ligand binding. J Chem Inf Model. 2013;53:2047–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL. Structure of a cytochrome P450-redox partner electron-transfer complex. Proc Nat Acad Sci USA. 1999;96:1863–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hong Y, Rashid R, Chen S. Binding features of steroidal and nonsteroidal inhibitors. Steroids. 2011;76:802–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Thompson EA Jr, Siiteri PK. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J Biol Chem. 1974;249:5364–72.

    CAS  PubMed  Google Scholar 

  46. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y, Fisher CR, Michael MD, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994;15:342–55.

    CAS  PubMed  Google Scholar 

  47. Johnston JO. Aromatase inhibitors. Crit Rev Biochem Mol Biol. 1998;33:375–405.

    CAS  PubMed  Google Scholar 

  48. Zhou DJ, Pompon D, Chen SA. Structure-function studies of human aromatase by site-directed mutagenesis: kinetic properties of mutants Pro-308—Phe, Tyr-361—Phe, Tyr-361—Leu, and Phe-406—Arg. Proc Nat Acad Sci USA. 1991;88:410–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kadohama N, Zhou D, Chen S, Osawa Y. Catalytic efficiency of expressed aromatase following site-directed mutagenesis. Biochim Biophys Acta. 1993;1163:195–200.

    Article  CAS  PubMed  Google Scholar 

  50. Chen S, Zhou D, Swiderek KM, Kadohama N, Osawa Y, Hall PF. Structure-function studies of human aromatase. J Steroid Biochem Mol Biol. 1993;44:347–56.

    Article  CAS  PubMed  Google Scholar 

  51. Kao YC, Zhou C, Sherman M, Laughton CA, Chen S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ Health Perspect. 1998;106:85–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Belgorosky A, Guercio G, Pepe C, Saraco N, Rivarola MA. Genetic and clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm Res. 2009;72:321–30.

    Article  CAS  PubMed  Google Scholar 

  53. Maffei L, Rochira V, Zirilli L, Antunez P, Aranda C, Fabre B, Simone ML, Pignatti E, Simpson ER, Houssami S, Clyne CD, Carani C. A novel compound heterozygous mutation of the aromatase gene in an adult man: reinforced evidence on the relationship between congenital oestrogen deficiency, adiposity and the metabolic syndrome. Clin Endocrinol. 2007;67:218–24.

    Article  CAS  Google Scholar 

  54. Baykan EK, Erdogan M, Ozen S, Darcan S, Saygili LF. Aromatase deficiency, a rare syndrome: case report. J Clin Res Pediatr Endocrinol. 2013;5:129–32.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Bouchoucha N, Samara-Boustani D, Pandey AV, Bony-Trifunovic H, Hofer G, Aigrain Y, Polak M, Fluck CE. Characterization of a novel CYP19A1 (aromatase) R192H mutation causing virilization of a 46, XX newborn, undervirilization of the 46, XY brother, but no virilization of the mother during pregnancies. Mol Cell Endocrinol. 2014;390:8–17.

    Article  CAS  PubMed  Google Scholar 

  56. Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M, Clyne CD, Davis S, Simpson ER, Carani C. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab. 2004;89:61–70.

    Article  CAS  PubMed  Google Scholar 

  57. Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, Korach KS, Simpson ER. Effect of testosterone and estradiol in a man with aromatase deficiency. New Engl J Med. 1997;337:91–5.

    Article  CAS  PubMed  Google Scholar 

  58. Ludwig M, Beck A, Wickert L, Bolkenius U, Tittel B, Hinkel K, Bidlingmaier F. Female pseudohermaphroditism associated with a novel homozygous G-to-A (V370-to-M) substitution in the P-450 aromatase gene. J Pediatr Endocrinol Metab (JPEM). 1998;11:657–64.

    CAS  Google Scholar 

  59. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab. 1995;80:3689–98.

    CAS  PubMed  Google Scholar 

  60. Hauri-Hohl A, Meyer-Boni M, Lang-Muritano M, Hauri-Hohl M, Schoenle EJ, Biason-Lauber A. Aromatase deficiency owing to a functional variant in the placenta promoter and a novel missense mutation in the CYP19A1 gene. Clin Endocrinol. 2011;75:39–43.

    Article  CAS  Google Scholar 

  61. Ito Y, Fisher CR, Conte FA, Grumbach MM, Simpson ER. Molecular basis of aromatase deficiency in an adult female with sexual infantilism and polycystic ovaries. Proc Nat Acad Sci USA. 1993;90:11673–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hong Y, Li H, Yuan YC, Chen S. Sequence-function correlation of aromatase and its interaction with reductase. J Steroid Biochem Mol Biol. 2010;118:203–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Di Nardo G, Breitner M, Sadeghi SJ, Castrignano S, Mei G, Di Venere A, Nicolai E, Allegra P, Gilardi G. Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy. PLoS One. 2013;8:e82118.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Sasano H, Sato S, Ito K, Yajima A, Nakamura J, Yoshihama M, Ariga K, Anderson TJ, Miller WR. Effects of aromatase inhibitors on the pathobiology of the human breast, endometrial and ovarian carcinoma. Endocr Relat Cancer. 1999;6:197–204.

    Article  CAS  PubMed  Google Scholar 

  65. Pavone ME, Bulun SE. Aromatase inhibitors for the treatment of endometriosis. Fertil Steril. 2012;98:1370–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Li YF, Hu W, Fu SQ, Li JD, Liu JH, Kavanagh JJ. Aromatase inhibitors in ovarian cancer: is there a role? Int J Gynecol Cancer. 2008;18:600–14 Official journal of the International Gynecological Cancer Society.

    Article  CAS  PubMed  Google Scholar 

  67. Weinberg OK, Marquez-Garban DC, Fishbein MC, Goodglick L, Garban HJ, Dubinett SM, Pietras RJ. Aromatase inhibitors in human lung cancer therapy. Cancer Res. 2005;65:11287–91.

    Article  CAS  PubMed  Google Scholar 

  68. Brueggemeier RW. Aromatase, aromatase inhibitors, and breast cancer. Am J Ther. 2001;8:333–44.

    Article  CAS  PubMed  Google Scholar 

  69. Brueggemeier RW, Hackett JC, Diaz-Cruz ES. Aromatase inhibitors in the treatment of breast cancer. Endocr Rev. 2005;26:331–45.

    Article  CAS  PubMed  Google Scholar 

  70. Brueggemeier RW. Update on the use of aromatase inhibitors in breast cancer. Expert Opin Pharmacother. 2006;7:1919–30.

    Article  CAS  PubMed  Google Scholar 

  71. Grimm SW, Dyroff MC. Inhibition of human drug metabolizing cytochromes P450 by anastrozole, a potent and selective inhibitor of aromatase. Drug Metab Dispos: The Biol Fate Chem. 1997;25:598–602.

    CAS  Google Scholar 

  72. Miller WR, Larionov AA. Understanding the mechanisms of aromatase inhibitor resistance. Breast Cancer Res (BCR). 2012;14:201.

    Article  CAS  Google Scholar 

  73. Kamdem LK, Flockhart DA, Desta Z. In vitro cytochrome P450-mediated metabolism of exemestane. Drug Metab Dispos: The Biol Fate Chem. 2011;39:98–105.

    Article  CAS  Google Scholar 

  74. Femara (letrozole) prescribing information. Novartis, East Hanover. http://www.pharma.us.novartis.com/product/pi/pdf/Femara.pdf.

  75. Ariazi EA, Leitao A, Oprea TI, Chen B, Louis T, Bertucci AM, Sharma CG, Gill SD, Kim HR, Shupp HA, Pyle JR, Madrack A, Donato AL, Cheng D, Paige JR, Jordan VC. Exemestane’s 17-hydroxylated metabolite exerts biological effects as an androgen. Mol Cancer Ther. 2007;6:2817–27.

    Article  CAS  PubMed  Google Scholar 

  76. Masri S, Lui K, Phung S, Ye J, Zhou D, Wang X, Chen S. Characterization of the weak estrogen receptor alpha agonistic activity of exemestane. Breast Cancer Res Treat. 2009;116:461–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Lombardi P. The irreversible inhibition of aromatase (oestrogen synthetase) by steroidal compounds. Curr Pharm Des. 1995;1:23–50.

    CAS  Google Scholar 

  78. Lombardi P. Exemestane, a new steroidal aromatase inhibitor of clinical relevance. Biochim Biophys Acta. 2002;1587:326–37.

    Article  CAS  PubMed  Google Scholar 

  79. Varela C, Tavares da Silva EJ, Amaral C, Correia da Silva G, Baptista T, Alcaro S, Costa G, Carvalho RA, Teixeira NA, Roleira FM. New structure-activity relationships of A- and D-ring modified steroidal aromatase inhibitors: design, synthesis, and biochemical evaluation. J Med Chem. 2012;55:3992–4002.

    Article  CAS  PubMed  Google Scholar 

  80. Varela CL, Amaral C, Correia-da-Silva G, Carvalho RA, Teixeira NA, Costa SC, Roleira FM, Tavares-da-Silva EJ. Design, synthesis and biochemical studies of new 7alpha-allylandrostanes as aromatase inhibitors. Steroids. 2013;78:662–9.

    Article  CAS  PubMed  Google Scholar 

  81. Ferlin MG, Marzano C, Dalla Via L, Chilin A, Zagotto G, Guiotto A, Moro S. New water soluble pyrroloquinoline derivatives as new potential anticancer agents. Bioorg Med Chem. 2005;13:4733–9.

    Article  CAS  PubMed  Google Scholar 

  82. Woo LW, Wood PM, Bubert C, Thomas MP, Purohit A, Potter BV. Synthesis and structure-activity relationship studies of derivatives of the dual aromatase-sulfatase inhibitor 4-{[(4-cyanophenyl)(4H-1,2,4-triazol-4-yl)amino]methyl}phenyl sulfamate. ChemMedChem. 2013;8:779–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Wood PM, Woo LW, Labrosse JR, Thomas MP, Mahon MF, Chander SK, Purohit A, Reed MJ, Potter BV. Bicyclic derivatives of the potent dual aromatase-steroid sulfatase inhibitor 2-bromo-4-{[(4-cyanophenyl)(4 h-1,2,4-triazol-4-yl)amino]methyl}phenylsulfamate: synthesis, SAR, crystal structure, and in vitro and in vivo activities. ChemMedChem. 2010;5:1577–93.

    Article  CAS  PubMed  Google Scholar 

  84. Egbuta C, Lo J, Ghosh D. Mechanism of inhibition of estrogen biosynthesis by azole fungicides. Endocrinology. 2014;155(12):4622–8.

    Article  PubMed  Google Scholar 

  85. Catalano S, Barone I, Giordano C, Rizza P, Qi H, Gu G, Malivindi R, Bonofiglio D, Ando S. Rapid estradiol/ERalpha signaling enhances aromatase enzymatic activity in breast cancer cells. Mol Endocrinol. 2009;23:1634–45.

    Article  CAS  PubMed  Google Scholar 

  86. Barone I, Giordano C, Malivindi R, Lanzino M, Rizza P, Casaburi I, Bonofiglio D, Catalano S, Ando S. Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells. Endocrinology. 2012;153:5157–66.

    Article  CAS  PubMed  Google Scholar 

  87. Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev. 2010;62:155–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Roselli CE, Liu M, Hurn PD. Brain aromatization: classic roles and new perspectives. Semin Reprod Med. 2009;27:207–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Balthazart J, Ball GF. Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci. 2006;29:241–9.

    Article  CAS  PubMed  Google Scholar 

  90. McEwen BS, Alves SE. Estrogen actions in the central nervous system. Endocr Rev. 1999;20:279–307.

    CAS  PubMed  Google Scholar 

  91. Schlinger BA, Arnold AP. Brain is the major site of estrogen synthesis in a male songbird. Proc Nat Acad Sci USA. 1991;88:4191–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Remage-Healey L, Oyama RK, Schlinger BA. Elevated aromatase activity in forebrain synaptic terminals during song. J Neuroendocrinol. 2009;21:191–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Miller TW, Shin I, Kagawa N, Evans DB, Waterman MR, Arteaga CL. Aromatase is phosphorylated in situ at serine-118. J Steroid Biochem Mol Biol. 2008;112:95–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Remage-Healey L, Dong SM, Chao A, Schlinger BA. Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J Neurophysiol. 2012;107:1621–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Peterson RS, Lee DW, Fernando G, Schlinger BA. Radial glia express aromatase in the injured zebra finch brain. J Comp Neurol. 2004;475:261–9.

    Article  CAS  PubMed  Google Scholar 

  96. Evrard HC, Balthazart J. Rapid regulation of pain by estrogens synthesized in spinal dorsal horn neurons. J Neuroscience. 2004;24:7225–9 The official journal of the Society for Neuroscience.

    Article  CAS  Google Scholar 

  97. Evrard H, Baillien M, Foidart A, Absil P, Harada N, Balthazart J. Localization and controls of aromatase in the quail spinal cord. J Comp Neurol. 2000;423:552–64.

    Article  CAS  PubMed  Google Scholar 

  98. Aloisi AM, Bonifazi M. Sex hormones, central nervous system and pain. Horm Behav. 2006;50:1–7.

    Article  CAS  PubMed  Google Scholar 

  99. Liu NJ, Chakrabarti S, Schnell S, Wessendorf M, Gintzler AR. Spinal synthesis of estrogen and concomitant signaling by membrane estrogen receptors regulate spinal kappa- and mu-opioid receptor heterodimerization and female-specific spinal morphine antinociception. J Neurosci. 2011;31:11836–45 The official journal of the Society for Neuroscience.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Gintzler AR, Liu NJ. Importance of sex to pain and its amelioration; relevance of spinal estrogens and its membrane receptors. Front Neuroendocrinol. 2012;33:412–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Srivastava DP, Waters EM, Mermelstein PG, Kramar EA, Shors TJ, Liu F. Rapid estrogen signaling in the brain: implications for the fine-tuning of neuronal circuitry. J Neurosci. 2011;31:16056–63 The official journal of the Society for Neuroscience.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported in part by grant GM086893 from the National Institutes of Health.

No Conflict of Interest

We have no potential conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, D., Lo, J., Egbuta, C. (2015). Structure, Function and Inhibition of Aromatase. In: Larionov, A. (eds) Resistance to Aromatase Inhibitors in Breast Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-17972-8_3

Download citation

Publish with us

Policies and ethics