Skip to main content

Abstract

Due to the increasing number of mammograms in recent years, several techniques for automatic breast cancer recognition have been developed. These new methods have enabled the development of different Computer Aided Diagnosis systems often known by the acronym (CAD). The typical architecture of a CAD system is mainly composed of three major steps, features extraction, description and classification that leads to breast cancer recognition. In this chapter, and after presenting the features extraction approaches, we present geometric, morphologic and speculated mass descriptors. The comparison between new and very known descriptors, provides a considerable help on breast masses recognition. The recognition performance system is discussed through the obtained results using SVM classifier and ROC curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottigli, U., Cascio, D., Fauci, F., Golosio, B., Magro, R., Masala, G. L., et al. (2006). Massive lesions classification using features based on morphological lesion differences. In Proceedings of World Academy of Science, Engineering and Technology (Vol. 12, pp. 20–24).

    Google Scholar 

  2. Brzakovic, D., Luo, X. M., & Brzakovic, P. (1990). An approach to automated detection of tumors in mammograms. IEEE Transactions on Medical Imaging, 9(3), 233–241.

    Article  Google Scholar 

  3. Chan, T., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  4. Cheikhrouhou I., Djemal, K., & Maaref, H. (2011). Protuberance selection descriptor for breast cancer diagnosis. In 3rd European Workshop on Visual Information Processing (EUVIP), Paris (pp. 280–285).

    Google Scholar 

  5. Cheikhrouhou I., Djemal, K., & Maaref, H. (2012). Characterization of mammographic masses using a new spiculated mass descriptor in computer aided diagnosis systems. International Journal of Signal and Imaging Systems Engineering, Inderscience, 5(2), 132–142.

    Article  Google Scholar 

  6. Cheikhrouhou, I., Djemal, K., Sellami, D., Maaref, H., & Derbel, N. (2009). Empirical descriptors evaluation for mass malignity recognition. In The First International Workshop on Medical Image Analysis and Description for Diagnosis Systems - MIAD 2009 (pp. 91–100).

    Google Scholar 

  7. Chen, C. Y., Chiou, H. J., Chou, Y. H., Chiou, S. Y., Wang, H. K., Chou, S. Y., et al. (2009). Computer-aided diagnosis of soft tissue tumors on high-resolution ultrasonography with geometrical and morphological features. Academic Radiology, 16(5), 618–626.

    Article  Google Scholar 

  8. Chen, C. M., Chou, Y. H., Han, K. C., Hung, G. S., Tiu, C. M., Chiou, H. J., et al. (2003). Breast lesions on sonograms. Computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology, 226, 504–514.

    Google Scholar 

  9. Ciatto, S., Turco, M. R. D., Risso, G., Catarzi, S., et al. (2003). Comparison of standard reading and computer aided detection (CAD) on a national proficiency test of screening mammography. European Journal of Radiology, 37(2), 135–138.

    Article  Google Scholar 

  10. Delogu, P., Fantaccia, M. E., Kasae, P., & Retico, A. (2007). Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier. Computers in Biology and Medicine, 37(10), 1479–1491.

    Article  Google Scholar 

  11. Djemal, K., Cocquerez, J. P., & Precioso, F. (2012). Visual feature extraction and description. In Visual indexing and retrieval book (pp. 5–20). New York: Springer. ISBN 978-1-4614- 3587-7.

    Google Scholar 

  12. Djemal, K., Puech, W., & Rossetto, B. (2006). Automatic active contours propagation in a sequence of medical images. International Journal of Images and Graphics, 6(2), 267–292.

    Article  Google Scholar 

  13. Djemal, K., & Maaref, H. (2011). Intelligent information description and recognition in biomedical image databases. In B. Igelnik (Ed.), Computational modeling and simulation of intellect: Current state and future perspectives. Hershey, PA: IGI Global. ISBN: 978-1-60960-551-3.

    Google Scholar 

  14. D’Orsi, C. J., Bassett, L. W., Berg, W. A., Feig, S. A., Jackson, V. P., Kopans, D. B., et al. (2003). American college of radiology (Breast imaging reporting and data system). Troisième édition française réalisée par SFR (Société Française de Radiologie).

    Google Scholar 

  15. Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, P. (2000). The digital database for screening mammography. In 5th International Workshop on Digital Mammography, Toronto, Canada.

    Google Scholar 

  16. Jiang, H., Tiu, W., Yamamoto, S., & Iisaku, S. I. (1997). Automatic recognition of spicules in mammograms. In International Conference on Image Processing (pp. 520–523).

    Google Scholar 

  17. Kallergi, M., Woods, K., Clarke, L. P., Qian, W., & Clark, R. A. (1992). Image segmentation in digital mammography: Comparison of local thresholding and region growing algorithms. IEEE Transactions on Computerized Medical Imaging and Graphics, 16, 231–323.

    Google Scholar 

  18. Kilday, J., Palmieri, F., & Fox, M. D. (1993). Classifying mammographic lesions using computer-aided image analysis. IEEE Transactions on Medical Imaging, 12(4), 664–669.

    Article  Google Scholar 

  19. Lee, Y. J., Park, J. M., & Park, H. W. (2000). Mammographic mass detection by adaptive thresholding and region growing. IEEE Transactions on International Journal of Imaging Systems and Technology, 11(5), 340–346.

    Article  Google Scholar 

  20. Li, C., Kao, C. Y., Gore, J. C., & Ding, Z. (2008). Minimization of region-scalable fitting energy for image segmentation. IEEE Transaction of Image Processing, 17(10), 1940–1949.

    Article  MathSciNet  Google Scholar 

  21. Petrick, N., Chan, H. P., Sahiner, B., Wei, D., Helvie, M. A., Goodsitt, M. M., et al. (1995). Automated detection of breast masses on digital mammograms using adaptive density-weighted contrast-enhancement filtering. Proceedings of SPIE, Medical Imaging, Image Processing, 2434, 590–597.

    Google Scholar 

  22. Song, J. H., Venkatesh, S. S., Conant, E. A., Arger, P. H., & Sehgal, C. M. (2005). Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses. Academic Radiology, 12, 487–495.

    Article  Google Scholar 

  23. Vapnik, V. (1998). Statistical learnig theory. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalifa Djemal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Djemal, K., Cheikhrouhou, I., Maaref, H. (2015). Mammographic Mass Description for Breast Cancer Recognition. In: Briassouli, A., Benois-Pineau, J., Hauptmann, A. (eds) Health Monitoring and Personalized Feedback using Multimedia Data. Springer, Cham. https://doi.org/10.1007/978-3-319-17963-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17963-6_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17962-9

  • Online ISBN: 978-3-319-17963-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics