Skip to main content

Aphthous Stomatitis

  • Chapter
  • First Online:
  • 828 Accesses

Abstract

Recurrent Aphthous Stomatitis (RAS) is a chronic, multi-factorial oral inflammatory disease that continues to present a clinical problem without a solution. Even though the etiopathogeny of RAS is still unknown, it has been classified as an auto-inflammatory disease based on its relationship with a possible dysfunction of the innate immunological response without evidence of alterations in the adaptive immune reaction that, in association with a dysfunction of the epithelial barrier, are probably involved in the emergence and evolution of ulcerated lesions. In this type of complex disease, the combination of environmental factors and genes of low frequency is most likely responsible for the establishment of the conditions that promote the development of the phenotype involved. In such cases, since the genetic factors are heterogeneous, the cause of the disease may be different for each individual. This hinders the precise identification of the reasons and the establishment of a unique therapeutic protocol, which functions in all cases. In this scenario, the application of personalized medicine will be of fundamental importance. Knowledge of the altered signaling pathways associated with each individual will be indispensable in developing personalized treatments. With the current technology, there exists the possibility of analyzing all the human transcripts in individual samples to identify the specific alterations associated with RAS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3(8):e297.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Scully C, Gorsky M, Lozada-Nur F. The diagnosis and management of recurrent aphthous stomatitis: a consensus approach. J Am Dent Assoc. 2003;134(2):200–7.

    Article  PubMed  Google Scholar 

  3. Letsinger JA, McCarty MA, Jorizzo JL. Complex aphthosis: a large case series with evaluation algorithm and therapeutic ladder from topicals to thalidomide. J Am Acad Dermatol. 2005;52(3 Pt 1):500–8.

    Article  PubMed  Google Scholar 

  4. Natah SS, et al. Increased density of lymphocytes bearing gamma/delta T-cell receptors in recurrent aphthous ulceration (RAU). Int J Oral Maxillofac Surg. 2000;29(5):375–80.

    Article  CAS  PubMed  Google Scholar 

  5. Mills MP, et al. Quantitative distribution of inflammatory cells in recurrent aphthous stomatitis. J Dent Res. 1980;59(3):562–6.

    Article  CAS  PubMed  Google Scholar 

  6. Stenman G, Heyden G. Premonitory stages of recurrent aphthous stomatitis. I. Histological and enzyme histochemical investigations. J Oral Pathol. 1980;9(3):155–62.

    Article  CAS  PubMed  Google Scholar 

  7. Pedersen A, Hougen HP, Kenrad B. T-lymphocyte subsets in oral mucosa of patients with recurrent aphthous ulceration. J Oral Pathol Med. 1992;21(4):176–80.

    Article  CAS  PubMed  Google Scholar 

  8. Savage NW, Seymour GJ, Kruger BJ. T-lymphocyte subset changes in recurrent aphthous stomatitis. Oral Surg Oral Med Oral Pathol. 1985;60(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  9. Ship JA, et al. Recurrent aphthous stomatitis. Quintessence Int. 2000;31(2):95–112.

    CAS  PubMed  Google Scholar 

  10. Thomas DW, Bagg J, Walker DM. The in vitro cytotoxic effect of leukocytes from patients with recurrent aphthous ulceration upon mouse 3T3 fibroblasts. J Oral Pathol. 1988;17(8):421–5.

    Article  CAS  PubMed  Google Scholar 

  11. Hasan A, et al. Recognition of a unique peptide epitope of the mycobacterial and human heat shock protein 65–60 antigen by T cells of patients with recurrent oral ulcers. Clin Exp Immunol. 1995;99(3):392–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hasan A, et al. Defining a T-cell epitope within HSP 65 in recurrent aphthous stomatitis. Clin Exp Immunol. 2002;128(2):318–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sun A, Chia JS, Chiang CP. Increased proliferative response of peripheral blood mononuclear cells and T cells to Streptococcus mutans and glucosyltransferase D antigens in the exacerbation stage of recurrent aphthous ulcerations. J Formos Med Assoc. 2002;101(8):560–6.

    CAS  PubMed  Google Scholar 

  14. Toussirot EA. Oral tolerance in the treatment of rheumatoid arthritis. Curr Drug Targets Inflamm Allergy. 2002;1(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  15. Savage NW, Seymour GJ. Specific lymphocytotoxic destruction of autologous epithelial cell targets in recurrent aphthous stomatitis. Aust Dent J. 1994;39(2):98–104.

    Article  CAS  PubMed  Google Scholar 

  16. Garside P, Mowat AM, Khoruts A. Oral tolerance in disease. Gut. 1999;44(1):137–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lewkowicz N, et al. Expression of Th1/Th2/Th3/Th17-related genes in recurrent aphthous ulcers. Arch Immunol Ther Exp (Warsz). 2011;59(5):399–406.

    Article  CAS  Google Scholar 

  18. Dalghous AM, Freysdottir J, Fortune F. Expression of cytokines, chemokines, and chemokine receptors in oral ulcers of patients with Behcet’s disease (BD) and recurrent aphthous stomatitis is Th1-associated, although Th2-association is also observed in patients with BD. Scand J Rheumatol. 2006;35(6):472–5.

    Article  CAS  PubMed  Google Scholar 

  19. Borra RC, et al. The Th1/Th2 immune-type response of the recurrent aphthous ulceration analyzed by cDNA microarray. J Oral Pathol Med. 2004;33(3):140–6.

    Article  CAS  PubMed  Google Scholar 

  20. Buno IJ, et al. Elevated levels of interferon gamma, tumor necrosis factor alpha, interleukins 2, 4, and 5, but not interleukin 10, are present in recurrent aphthous stomatitis. Arch Dermatol. 1998;134(7):827–31.

    Article  CAS  PubMed  Google Scholar 

  21. Miyamoto NT Jr., et al. Immune-expression of HSP27 and IL-10 in recurrent aphthous ulceration. J Oral Pathol Med. 2008;37(8):462–7.

    Article  PubMed  Google Scholar 

  22. Lewkowicz N, et al. Predominance of Type 1 cytokines and decreased number of CD4(+)CD25(+ high) T regulatory cells in peripheral blood of patients with recurrent aphthous ulcerations. Immunol Lett. 2005;99(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  23. Barros FM, et al. Possible Association between Th1 Immune Polarization and Epithelial Permeability with Toll-Like Receptors 2 Dysfunction in the Pathogenesis of the Recurrent Aphthous Ulceration. Ulcers. 2010;2010:11.

    Article  Google Scholar 

  24. Sequeira FF, Daryani D. The oral and skin pathergy test. Indian J Dermatol Venereol Leprol. 2011;77(4):526–30.

    Article  PubMed  Google Scholar 

  25. Ozdemir M, et al. Pathergy reaction in different body areas in Behcet’s disease. Clin Exp Dermatol. 2007;32(1):85–7.

    CAS  PubMed  Google Scholar 

  26. Togashi A, et al. Skin prick test with self-saliva in patients with oral aphthoses: a diagnostic pathergy for Behcetʼs disease and recurrent aphthosis. Inflamm Allergy Drug Targets. 2011;10(3):164–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Veller-Fornasa C, Gallina P. Recurrent aphthous stomatitis as an expression of pathergy in atopics. Acta Dermatovenerol Alp Panonica Adriat. 2006;15(3):144–7.

    Google Scholar 

  28. Sun A, Kwan HW. Serum IgD and IgE concentrations in recurrent aphthous ulcers and oral lichen planus. Zhonghua Ya Yi Xue Hui Za Zhi. 1986;5(1):7–11.

    CAS  PubMed  Google Scholar 

  29. Scully C, Yap PL, Boyle P. IgE and IgD concentrations in patients with recurrent aphthous stomatitis. Arch Dermatol. 1983;119(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  30. Vaccarino L, et al. Pathological implications of Th1/Th2 cytokine genetic variants in Behcet’s disease: data from a pilot study in a Sicilian population. Biochem Genet. 2013;51(11–12):967–75.

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Boussiotis VA. The role of IL-17-producing Foxp3+ CD4+ T cells in inflammatory bowel disease and colon cancer. Clin Immunol. 2013;148(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  32. Taylor LJ, et al. Increased production of tumour necrosis factor by peripheral blood leukocytes in patients with recurrent oral aphthous ulceration. J Oral Pathol Med. 1992;21(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  33. Sun A, et al. Expression of interleukin-2 receptor by activated peripheral blood lymphocytes upregulated by the plasma level of interleukin-2 in patients with recurrent aphthous ulcers. Proc Natl Sci Counc Repub China B. 2000;24(3):116–22.

    CAS  PubMed  Google Scholar 

  34. Natah SS, et al. Immunolocalization of tumor necrosis factor-alpha expressing cells in recurrent aphthous ulcer lesions (RAU). J Oral Pathol Med. 2000;29(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  35. Sand FL, Thomsen SF. Efficacy and safety of TNF-alpha inhibitors in refractory primary complex aphthosis: a patient series and overview of the literature. J Dermatolog Treat. 2013;24(6):444–6.

    Article  CAS  PubMed  Google Scholar 

  36. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol. 2007;147(2):199–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Frazao JB, Errante PR, Condino-Neto A. Toll-like receptorsʼ pathway disturbances are associated with increased susceptibility to infections in humans. Arch Immunol Ther Exp (Warsz). 2013;61(6):427–43.

    Article  CAS  Google Scholar 

  38. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006;124(4):849–63.

    Article  CAS  PubMed  Google Scholar 

  39. Pradeu T, Cooper EL. The danger theory: 20 years later. Front Immunol. 2012;3:287.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Li J, Lee DS, Madrenas J. Evolving Bacterial Envelopes and Plasticity of TLR2-Dependent Responses: basic Research and Translational Opportunities. Front Immunol. 2013;4:347.

    PubMed Central  PubMed  Google Scholar 

  41. Barrett AW, Cruchley AT, Williams DM. Oral mucosal Langerhansʼ cells. Crit Rev Oral Biol Med. 1996;7(1):36–58.

    Article  CAS  PubMed  Google Scholar 

  42. Hovav AH. Dendritic cells of the oral mucosa. Mucosal Immunol. 2014;7(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  43. Novak N, et al. Human skin and oral mucosal dendritic cells as ‘good guys’ and ʽbad guysʼ in allergic immune responses. Clin Exp Immunol. 2010;161(1):28–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Jaitley S, Saraswathi T. Pathophysiology of Langerhans cells. J Oral Maxillofac Pathol. 2012;16(2):239–44.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Allam JP, et al. Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J Allergy Clin Immunol. 2008;121(2):368–374e1.

    Article  CAS  PubMed  Google Scholar 

  46. Flacher V, et al. Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol. 2006;177(11):7959–67.

    Article  CAS  PubMed  Google Scholar 

  47. Cutler CW, Jotwani R. Dendritic cells at the oral mucosal interface. J Dent Res. 2006;85(8):678–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Natah SS, et al. Factor XIIIa-positive dendrocytes are increased in number and size in recurrent aphthous ulcers (RAU). J Oral Pathol Med. 1997;26(9):408–13.

    Article  CAS  PubMed  Google Scholar 

  49. Upadhyay J, et al. Langerhans Cells and Their Role in Oral Mucosal Diseases. N Am J Med Sci. 2013;5(9):505–514.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Sawair FA. Does smoking really protect from recurrent aphthous stomatitis? Ther Clin Risk Manag. 2010;6:573–7.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Van den Bossche J, Van Ginderachter JA. E-cadherin: from epithelial glue to immunological regulator. Eur J Immunol. 2013;43(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  52. Daniels TE. Human mucosal Langerhans cells: postmortem identification of regional variations in oral mucosa. J Invest Dermatol. 1984;82(1):21–4.

    Article  CAS  PubMed  Google Scholar 

  53. Nanke Y, et al. Irsogladine is effective for recurrent oral ulcers in patients with Behcet’s disease: an open-label, single-centre study. Drugs R D. 2008;9(6):455–9.

    Article  CAS  PubMed  Google Scholar 

  54. Rattan J, et al. Sucralfate suspension as a treatment of recurrent aphthous stomatitis. J Intern Med. 1994;236(3):341–3.

    Article  CAS  PubMed  Google Scholar 

  55. Cario E. Barrier-protective function of intestinal epithelial Toll-like receptor 2. Mucosal Immunol. 2008;1(Suppl 1):S62–6.

    Article  CAS  PubMed  Google Scholar 

  56. Ey B, et al. Loss of TLR2 worsens spontaneous colitis in MDR1A deficiency through commensally induced pyroptosis. J Immunol. 2013;190(11):5676–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127(1):224–38.

    Article  CAS  PubMed  Google Scholar 

  58. Pierik M, et al. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis. 2006;12(1):1–8.

    Article  PubMed  Google Scholar 

  59. Borra RC, et al. Toll-like receptor activity in recurrent aphthous ulceration. J Oral Pathol Med. 2009;38(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  60. Seoudi N, et al. The role of TLR2 and 4 in Behcet’s disease pathogenesis. Innate Immun. 2014;20(4):412–22.

    Article  PubMed  Google Scholar 

  61. Sewell GW, et al. Defective tumor necrosis factor release from Crohn’s disease macrophages in response to Toll-like receptor activation: relationship to phenotype and genome-wide association susceptibility loci. Inflamm Bowel Dis. 2012;18(11):2120–7.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Gallo C, et al. Differential expression of toll-like receptor mRNAs in recurrent aphthous ulceration. J Oral Pathol Med. 2012;41(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  63. Meng J, et al. Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS One. 2013;8(1):e54040.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Hietanen J, et al. Recurrent aphthous ulcers–a Toll-like receptor-mediated disease? J Oral Pathol Med. 2012;41(2):158–64.

    Article  PubMed  Google Scholar 

  65. Hill SC, Stavrakoglou A, Coutts IR. Nicotine replacement therapy as a treatment for complex aphthosis. J Dermatolog Treat. 2010;21(5):317–8.

    Article  PubMed  Google Scholar 

  66. Julian MW, et al. Nicotine treatment improves Toll-like receptor 2 and Toll-like receptor 9 responsiveness in active pulmonary sarcoidosis. Chest. 2013;143(2):461–70.

    Article  CAS  PubMed  Google Scholar 

  67. Greene CM, et al. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine eceptor. Mediators Inflamm. 2010;2010:423241.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Mahanonda R, et al. Cigarette smoke extract modulates human beta-defensin-2 and interleukin-8 expression in human gingival epithelial cells. J Periodontal Res. 2009;44(4):557–64.

    Article  CAS  PubMed  Google Scholar 

  69. Kox M, et al. GTS-21 inhibits pro-inflammatory cytokine release independent of the Toll-like receptor stimulated via a transcriptional mechanism involving JAK2 activation. Biochem Pharmacol. 2009;78(7):863–72.

    Article  CAS  PubMed  Google Scholar 

  70. Chen H, et al. Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NF-kappaB in alveolar macrophages stimulated with TLR2 and TLR4 agonists. J Immunol. 2007;179(9):6097–106.

    Article  CAS  PubMed  Google Scholar 

  71. Hou L, Zhao H. A review of post-GWAS prioritization approaches. Front Genet. 2013;4:280.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Reilly D, et al. Use of systems biology approaches to analysis of genome-wide association studies of myocardial infarction and blood cholesterol in the nurses’ health study and health professionals’ follow-up study. PLoS One. 2013;8(12):e85369.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Chen B, Butte AJ. Network medicine in disease analysis and therapeutics. Clin Pharmacol Ther. 2013;94(6):627–9.

    Article  CAS  PubMed  Google Scholar 

  74. Langfelder P, Mischel PS, Horvath S. When is hub gene selection better than standard meta-analysis? PLoS One. 2013;8(4):e61505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Oldham MC, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008;11(11):1271–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ivliev AE, t Hoen PA, Sergeeva MG. Coexpression network analysis identifies transcriptional modules related to proastrocytic differentiation and sprouty signaling in glioma. Cancer Res. 2010;70(24):10060–70.

    Article  CAS  PubMed  Google Scholar 

  77. Horvath S, et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA. 2006;103(46):17402–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Shulzhenko N, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;17(12):1585–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Chaussabel D, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity. 2008;29(1):150–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Carneiro Borra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borra, R., de Andrade, P. (2015). Aphthous Stomatitis. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_8

Download citation

Publish with us

Policies and ethics