Skip to main content

Host Genomics and Response to Infectious Agents

  • Chapter
  • First Online:
Genomics, Personalized Medicine and Oral Disease
  • 816 Accesses

Abstract

Most adults are latently and life-long infected by Herpes simplex virus type I (HSV-1), which causes common, and usually mild, diseases of the orofacial skin and mucous membranes, including herpes labialis (cold sores) and gingivostomatitis. However, many infected individuals never experience any symptoms. On the contrary, some patients suffer disturbingly frequent recurrences, which reflect incapacity of the immune system to avoid virus reactivation from latent infection. Furthermore, HSV-1 can cause infections of greater clinical consequence, such as those affecting the central nervous system or the eye. This variability in the control of the widespread HSV-1 infection has intrigued physicians and scientists since decades ago but it remains largely unexplained. Here we review recent contributions to knowledge on defence against herpetic infection and the relationship between diversity of the human genome and variable susceptibility to disease caused by HSV-1, as a model of oral chronic infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu F, Sternberg MR, Kottiri BJ, et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. Jama. 2006;296:964–73.

    Article  CAS  PubMed  Google Scholar 

  2. Schillinger JA, Xu F, Sternberg MR, et al. National seroprevalence and trends in herpes simplex virus type 1 in the United States, 1976–1994. Sex Transm Dis. 2004;31:753–60.

    Article  PubMed  Google Scholar 

  3. Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis. 1998;26:541–53; quiz 54–5.

    Google Scholar 

  4. Hobbs MR, Jones BB, Otterud BE, Leppert M, Kriesel JD. Identification of a herpes simplex labialis susceptibility region on human chromosome 21. J Infect Dis. 2008;197:340–6. doi:10.1086/525540.

    Article  PubMed  Google Scholar 

  5. Watson G, Xu W, Reed A, et al. Sequence and comparative analysis of the genome of HSV-1 strain McKrae. Virology 2012;433:528–37.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor TJ, Brockman MA, McNamee EE, Knipe DM. Herpes simplex virus. Front Biosci. 2002;7:d752–64.

    Article  CAS  PubMed  Google Scholar 

  7. Abel L, Plancoulaine S, Jouanguy E, et al. Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J Pediatr. 2010;157:623–9.

    Article  PubMed  Google Scholar 

  8. Chase RA, Pottage JC Jr., Haber MH, Kistler G, Jensen D, Levin S. Herpes simplex viral hepatitis in adults: two case reports and review of the literature. Rev Infect Dis. 1987;9:329–33.

    Article  CAS  PubMed  Google Scholar 

  9. Frederick DM, Bland D, Gollin Y. Fatal disseminated herpes simplex virus infection in a previously healthy pregnant woman. A case report. J Reprod Med. 2002;47:591–6.

    PubMed  Google Scholar 

  10. Leung DY. Why is eczema herpeticum unexpectedly rare? Antiviral Res. 2013;98:153–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Whitley R, Arvin A, Prober C, et al. Predictors of morbidity and mortality in neonates with herpes simplex virus infections. The national institute of allergy and infectious diseases collaborative antiviral study group. N Engl J Med 1991;324:450–4.

    Article  CAS  PubMed  Google Scholar 

  12. Liesegang TJ. Herpes simplex virus epidemiology and ocular importance. Cornea 2001;20:1–13.

    Article  CAS  PubMed  Google Scholar 

  13. Arduino PG, Porter SR. Herpes simplex virus type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med 2008;37:107–21. doi:10.1111/j.600–0714.2007.00586.x.

    Article  PubMed  Google Scholar 

  14. Sokumbi O, Wetter DA. Clinical features, diagnosis, and treatment of erythema multiforme: a review for the practicing dermatologist. Int J Dermatol 2012;51:889–902.

    Article  PubMed  Google Scholar 

  15. Roizman B, Taddeo B. The strategy of herpes simplex virus replication and takeover of the host cell. In: Arvin Aea, Editor. Human herpesviruses. Cambridge: Cambridge University Press; 2007. pp. 163–73.

    Chapter  Google Scholar 

  16. Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunol Rev. 2013;255:25–39.

    Article  PubMed  CAS  Google Scholar 

  17. Pollara G, Jones M, Handley ME, et al. Herpes simplex virus type-1-induced activation of myeloid dendritic cells: he roles of virus cell interaction and paracrine type I IFN secretion. J Immunol. 2004;173:4108–19.

    Article  CAS  PubMed  Google Scholar 

  18. Mossman KL, Ashkar AA. Herpesviruses and the innate immune response. Viral Immunol. 2005;18:267–81.

    Article  CAS  PubMed  Google Scholar 

  19. Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci U. S. A. 2000;97:6097–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ishioka K, Ikuta K, Sato Y, et al. Herpes simplex virus type 1 virion-derived US11 inhibits type 1 interferon-induced protein kinase R phosphorylation. Microbiol Immunol. 2013;57:426–36.

    Article  CAS  PubMed  Google Scholar 

  21. Mossman KL, Smiley JR. Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol. 2002;76:1995–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Taddeo B, Luo TR, Zhang W, Roizman B. Activation of NF-kappaB in cells productively infected with HSV-1 depends on activated protein kinase R and plays no apparent role in blocking apoptosis. Proc Natl Acad Sci U. S. A. 2003;100:12408–13. (Epub 2003 Oct 6).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Xing J, Wang S, Lin R, Mossman KL, Zheng C. Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-I and MDA-5. J Virol. 2012;86:3528–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Suzutani T, Nagamine M, Shibaki T, et al. The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection. J Gen Virol. 2000;81:1763–71.

    Article  CAS  PubMed  Google Scholar 

  25. Chee AV, Roizman B. Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites. J Virol. 2004;78:4185–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Johnson KE, Knipe DM. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation. Virology. 2010;396:21–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Melroe GT, DeLuca NA, Knipe DM. Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol. 2004;78:8411–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. van Lint AL, Murawski MR, Goodbody RE, et al. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J Virol. 2010;84:10802–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Lin R, Noyce RS, Collins SE, Everett RD, Mossman KL. The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 2004;78:1675–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Daubeuf S, Singh D, Tan Y, et al. HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood. 2009;113:3264–75. doi:10.1182/blood-2008-07-168203. (Epub 2008 Oct 24.)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Moretta L, Pietra G, Montaldo E, et al. Human NK cells: from surface receptors to the therapy of leukemias and solid tumors. Front Immunol. 2014;5:87.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376.

    Article  CAS  PubMed  Google Scholar 

  33. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  PubMed  Google Scholar 

  34. Fernandez-Messina L, Reyburn HT, Vales-Gomez M. Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front Immunol. 2012;3:299.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bahram S, Inoko H, Shiina T, Radosavljevic M. MIC and other NKG2D ligands: from none to too many. Curr Opin Immunol. 2005;17:505–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sivori S, Carlomagno S, Pesce S, Moretta A, Vitale M, Marcenaro E. TLR/NCR/KIR: Which one to use and when? Front Immunol. 2014;5:105. doi:10.3389/fimmu.2014.00105. eCollection 2014.

    PubMed Central  PubMed  Google Scholar 

  37. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73–91.

    Article  CAS  PubMed  Google Scholar 

  38. Jouanguy E, Gineau L, Cottineau J, Beziat V, Vivier E, Casanova JL. Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol. 2013;13:589–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132:515–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Allan RS, Waithman J, Bedoui S, et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006;25:153–62.

    Article  CAS  PubMed  Google Scholar 

  41. Cose SC, Jones CM, Wallace ME, Heath WR, Carbone FR. Antigen-specific CD8 + T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. Eur J Immunol. 1997;27:2310–6.

    Article  CAS  PubMed  Google Scholar 

  42. Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL. Herpes simplex virus-specific memory CD8 + T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 2003;18:593–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Frank GM, Lepisto AJ, Freeman ML, Sheridan BS, Cherpes TL, Hendricks RL. Early CD4(+) T cell help prevents partial CD8(+) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency. J Immunol. 2010;184:277–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 2003;300:337–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science. 2003;300:339–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Germain RN. Antigen processing and presentation. In: WEP, Editor. Fundamental immunology. Phladelphia: Lippincott-Raven; 1999. pp. 287–340.

    Google Scholar 

  47. Hill A, Jugovic P, York I, et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature. 1995;375:411–5.

    Article  CAS  PubMed  Google Scholar 

  48. Kobelt D, Lechmann M, Steinkasserer A. The interaction between dendritic cells and herpes simplex virus-1. Curr Top Microbiol Immunol. 2003;276:145–61.

    CAS  PubMed  Google Scholar 

  49. Kruse M, Rosorius O, Kratzer F, et al. Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol. 2000;74:7127–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kummer M, Turza NM, Muhl-Zurbes P, et al. Herpes simplex virus type 1 induces CD83 degradation in mature dendritic cells with immediate-early kinetics via the cellular proteasome. J Virol. 2007;81:6326–38. (Epub 2007 Apr 11.)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Barcy S, Corey L. Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4 + T cells. J Immunol. 2001;166:6242–9.

    Article  CAS  PubMed  Google Scholar 

  52. Raftery MJ, Winau F, Kaufmann SH, Schaible UE, Schonrich G. CD1 antigen presentation by human dendritic cells as a target for herpes simplex virus immune evasion. J Immunol. 2006;177:6207–14.

    Article  CAS  PubMed  Google Scholar 

  53. Yuan W, Dasgupta A, Cresswell P. Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat Immunol. 2006;7:835–42. (Epub 2006 Jul 16.)

    Article  CAS  PubMed  Google Scholar 

  54. Grubor-Bauk B, Arthur JL, Mayrhofer G. Importance of NKT cells in resistance to herpes simplex virus, fate of virus-infected neurons, and level of latency in mice. J Virol. 2008;82:11073–83. doi:10.1128/JVI.00205–08. (Epub 2008 Jul 9.)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Johnson DC, Frame MC, Ligas MW, Cross AM, Stow ND. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol. 1988;62:1347–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Dubin G, Socolof E, Frank I, Friedman HM. Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol. 1991;65:7046–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Frank I, Friedman HM. A novel function of the herpes simplex virus type 1 Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J Virol. 1989;63:4479–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Friedman HM, Cohen GH, Eisenberg RJ, Seidel CA, Cines DB. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature. 1984;309:633–5.

    Article  CAS  PubMed  Google Scholar 

  59. Fries LF, Friedman HM, Cohen GH, Eisenberg RJ, Hammer CH, Frank MM. Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol. 1986;137:1636–41.

    CAS  PubMed  Google Scholar 

  60. Kostavasili I, Sahu A, Friedman HM, Eisenberg RJ, Cohen GH, Lambris JD. Mechanism of complement inactivation by glycoprotein C of herpes simplex virus. J Immunol. 1997;158:1763–71.

    CAS  PubMed  Google Scholar 

  61. Lopez C. Genetics of natural resistance to herpesvirus infections in mice. Nature. 1975;258:152–3.

    Article  CAS  PubMed  Google Scholar 

  62. Halford WP, Balliet JW, Gebhardt BM. Re-evaluating natural resistance to herpes simplex virus type 1. J Virol 2004;78:10086–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lundberg P, Welander P, Openshaw H, et al. A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J Virol. 2003;77:11661–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Pereira RA, Scalzo A, Simmons A. Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J Immunol. 2001;166:5869–73.

    Article  CAS  PubMed  Google Scholar 

  65. Zawatzky R, Hilfenhaus J, Marcucci F, Kirchner H. Experimental infection of inbred mice with herpes simplex virus type 1. I. Investigation of humoral and cellular immunity and of interferon induction. J Gen Virol. 1981;53:31–8.

    Article  CAS  PubMed  Google Scholar 

  66. Zawatzky R, Gresser I, DeMaeyer E, Kirchner H. The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1. J Infect Dis. 1982;146:405–10.

    Article  CAS  PubMed  Google Scholar 

  67. Lopez C. Resistance to HSV-1 in the mouse is governed by two major, independently segregating, non-H-2 loci. Immunogenetics. 1980;11:87–92.

    Article  CAS  PubMed  Google Scholar 

  68. Thompson RL, Williams RW, Kotb M, Sawtell NM. A forward phenotypically driven unbiased genetic analysis of host genes that moderate herpes simplex virus virulence and stromal keratitis in mice. PLoS One. 2014;9:e92342.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Foster CS, Tsai Y, Monroe JG, et al. Genetic studies on murine susceptibility to herpes simplex keratitis. Clin Immunol Immunopathol. 1986;40:313–25.

    Article  CAS  PubMed  Google Scholar 

  70. Norose K, Yano A, Zhang XM, Blankenhorn E, Heber-Katz E. Mapping of genes involved in murine herpes simplex virus keratitis: identification of genes and their modifiers. J Virol. 2002;76:3502–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Vollstedt S, Arnold S, Schwerdel C, et al. Interplay between alpha/beta and gamma interferons with B, T, and natural killer cells in the defense against herpes simplex virus type 1. J Virol. 2004;78:3846–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Smith PM, Wolcott RM, Chervenak R, Jennings SR. Control of acute cutaneous herpes simplex virus infection: T cell-mediated viral clearance is dependent upon interferon-gamma (IFN-gamma). Virology. 1994;202:76–88.

    Article  CAS  PubMed  Google Scholar 

  73. Cantin E, Tanamachi B, Openshaw H, Mann J, Clarke K. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. J Virol. 1999;73:5196–200.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Cai MS, Li ML, Zheng CF. Herpesviral infection and Toll-like receptor 2. Protein Cell. 2012;3:590–601.

    Article  CAS  PubMed  Google Scholar 

  75. Leoni V, Gianni T, Salvioli S, Campadelli-Fiume G. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappaB. J Virol. 2012;86:6555–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Rasmussen SB, Sorensen LN, Malmgaard L, et al. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems. J Virol. 2007;81:13315–24. (Epub 2007 Oct 3.)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317:1522–7.

    Article  CAS  PubMed  Google Scholar 

  78. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 2006;80:5059–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Melchjorsen J, Rintahaka J, Soby S, et al. Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol. 2010;84:11350–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Rasmussen SB, Jensen SB, Nielsen C, et al. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production. J Gen Virol. 2009;90:74–8. doi:10.1099/vir.0.005389–0.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology. 2013;218:1312–21.

    Article  CAS  PubMed  Google Scholar 

  82. Paludan SR, Bowie AG. Immune sensing of DNA. Immunity. 2013;38:870–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Casrouge A, Zhang SY, Eidenschenk C, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 2006;314:308–12. (Epub 2006 Sep 14.)

    Article  CAS  PubMed  Google Scholar 

  84. Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 2007;177:265–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature. 2008;452:234–8. doi:10.1038/nature06726. (Epub 2008 Feb 27).

    Article  CAS  PubMed  Google Scholar 

  86. Guo Y, Audry M, Ciancanelli M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011;208:2083–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Sancho-Shimizu V, Perez de Diego R, Lorenzo L, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 2011;121:4889–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Perez de Diego R, Sancho-Shimizu V, Lorenzo L, et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity. 2010;33:400–11.

    Article  CAS  PubMed  Google Scholar 

  89. Herman M, Ciancanelli M, Ou YH, et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med. 2012;209:1567–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol. 2011;1:487–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Bustamante J, Boisson-Dupuis S, Jouanguy E, et al. Novel primary immunodeficiencies revealed by the investigation of paediatric infectious diseases. Curr Opin Immunol. 2008;20:39–48.

    Article  CAS  PubMed  Google Scholar 

  92. Spiegel R, Miron D, Yodko H, Lumelsky D, Habib A, Horovitz Y. Late relapse of herpes simplex virus encephalitis in a child due to reactivation of latent virus: clinicopathological report and review. J Child Neurol. 2008;23:344–8. doi:10.1177/0883073807309243. (Epub 2008 Jan 29.)

    Article  PubMed  Google Scholar 

  93. Yang CA, Raftery MJ, Hamann L, et al. Association of TLR3-hyporesponsiveness and functional TLR3 L412F polymorphism with recurrent herpes labialis. Hum Immunol. 2012;73:844–51.

    Article  CAS  PubMed  Google Scholar 

  94. Svensson A, Tunback P, Nordstrom I, Padyukov L, Eriksson K. Polymorphisms in Toll-like receptor 3 confer natural resistance to human herpes simplex virus type 2 infection. J Gen Virol. 2012;93:1717–24.

    Article  CAS  PubMed  Google Scholar 

  95. Bochud PY, Magaret AS, Koelle DM, Aderem A, Wald A. Polymorphisms in TLR2 are associated with increased viral shedding and lesional rate in patients with genital herpes simplex virus Type 2 infection. J Infect Dis. 2007;196:505–9. (Epub 2007 Jun 29.)

    Article  CAS  PubMed  Google Scholar 

  96. Moraru M, Cisneros E, Gomez-Lozano N, et al. Host genetic factors in susceptibility to herpes simplex type 1 virus infection: contribution of polymorphic genes at the interface of innate and adaptive immunity. J Immunol. 2012;188:4412–20.

    Article  CAS  PubMed  Google Scholar 

  97. Apps R, Qi Y, Carlson JM, et al. Influence of HLA-C expression level on HIV control. Science. 2013;340:87–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Rizvi SM, Salam N, Geng J, et al. Distinct assembly profiles of HLA-B molecules. J Immunol. 2014;192:4967–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51.

    Article  CAS  PubMed  Google Scholar 

  100. Raulet DH, Held W, Correa I, Dorfman JR, Wu MF, Corral L. Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunol Rev. 1997;155:41–52.

    Article  CAS  PubMed  Google Scholar 

  101. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science. 2002;296:1323–6.

    Article  CAS  PubMed  Google Scholar 

  102. Smith HR, Heusel JW, Mehta IK, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U. S. A. 2002;99:8826–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Pyo CW, Guethlein LA, Vu Q, et al. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS One. 2010;5:e15115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Jiang W, Johnson C, Jayaraman J, et al. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res. 2012;22:1845–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Martin MP, Carrington M. Immunogenetics of HIV disease. Immunol Rev. 2013;254:245–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Moesta AK, Graef T, Abi-Rached L, Older Aguilar AM, Guethlein LA, Parham P. Humans differ from other hominids in lacking an activating NK cell receptor that recognizes the C1 epitope of MHC class I. J Immunol. 2010;185:4233–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. David G, Djaoud Z, Willem C, et al. Large spectrum of HLA-C recognition by killer Ig-like receptor (KIR)2DL2 and KIR2DL3 and restricted C1 SPECIFICITY of KIR2DS2: dominant impact of KIR2DL2/KIR2DS2 on KIR2D NK cell repertoire formation. J Immunol. 2013;191:4778–88.

    Article  CAS  PubMed  Google Scholar 

  108. Shum BP, Flodin LR, Muir DG, et al. Conservation and variation in human and common chimpanzee CD94 and NKG2 genes. J Immunol. 2002;168:240–52.

    Article  CAS  PubMed  Google Scholar 

  109. Miyashita R, Tsuchiya N, Hikami K, et al. Molecular genetic analyses of human NKG2C (KLRC2) gene deletion. Int Immunol. 2004;16:163–8.

    Article  CAS  PubMed  Google Scholar 

  110. Hikami K, Tsuchiya N, Yabe T, Tokunaga K. Variations of human killer cell lectin-like receptors: common occurrence of NKG2-C deletion in the general population. Genes Immun. 2003;4:160–7.

    Article  CAS  PubMed  Google Scholar 

  111. Muntasell A, Lopez-Montanes M, Vera A, et al. NKG2C zygosity influences CD94/NKG2C receptor function and the NK-cell compartment redistribution in response to human cytomegalovirus. Eur J Immunol. 2013;43:3268–78.

    Article  CAS  PubMed  Google Scholar 

  112. Colonna M, Navarro F, Bellon T, et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med. 1997;186:1809–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Yang Z, Bjorkman PJ. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci U. S. A. 2008;105:10095–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Davidson CL, Li NL, Burshtyn DN. LILRB1 polymorphism and surface phenotypes of natural killer cells. Hum Immunol. 2010;71:942–9.

    Article  CAS  PubMed  Google Scholar 

  115. Lopez-Alvarez MR, Jones DC, Jiang W, Traherne JA, Trowsdale J. Copy number and nucleotide variation of the LILR family of myelomonocytic cell activating and inhibitory receptors. Immunogenetics. 2014;66:73–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.

    Article  CAS  PubMed  Google Scholar 

  117. van Sorge NM, van der Pol WL, van de Winkel JG. FcgammaR polymorphisms: Implications for function, disease susceptibility and immunotherapy. Tissue Antigens. 2003;61:189–202.

    Article  PubMed  Google Scholar 

  118. Wu J, Edberg JC, Redecha PB, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100:1059–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature. 2000;406:267–73.

    Article  CAS  PubMed  Google Scholar 

  120. Radaev S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD. The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem. 2001;276:16469–77. (Epub 2001 Jan 31.)

    Article  CAS  PubMed  Google Scholar 

  121. Metes D, Ernst LK, Chambers WH, Sulica A, Herberman RB, Morel PA. Expression of functional CD32 molecules on human NK cells is determined by an allelic polymorphism of the FcgammaRIIC gene. Blood. 1998;91:2369–80.

    CAS  PubMed  Google Scholar 

  122. van der Heijden J, Breunis WB, Geissler J, de Boer M, van den Berg TK, Kuijpers TW. Phenotypic variation in IgG receptors by nonclassical FCGR2C alleles. J Immunol. 2012;188:1318–24.

    Article  PubMed  CAS  Google Scholar 

  123. Mueller M, Barros P, Witherden AS, et al. Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus. Am J Hum Genet. 2013;92:28–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Floto RA, Clatworthy MR, Heilbronn KR, et al. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat Med. 2005;11:1056–8. (Epub 2005 Sep 18.)

    Article  CAS  PubMed  Google Scholar 

  125. Su K, Li X, Edberg JC, Wu J, Ferguson P, Kimberly RP. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J Immunol. 2004;172:7192–9.

    Article  CAS  PubMed  Google Scholar 

  126. Kriesel JD, Jones BB, Matsunami N, et al. C21orf91 genotypes correlate with herpes simplex labialis (cold sore) frequency: description of a cold sore susceptibility gene. J Infect Dis. 2011;204:1654–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Itzhaki R, Wozniak M. Susceptibility to herpes simplex labialis conferred by the gene encoding apolipoprotein E. J Infect Dis. 2008;198:624–5. (author reply 5–6. doi:10.1086/590213.)

    Article  PubMed  Google Scholar 

  128. Burgos JS, Ramirez C, Sastre I, Valdivieso F. Effect of apolipoprotein E on the cerebral load of latent herpes simplex virus type 1 DNA. J Virol. 2006;80:5383–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Burgos JS, Ramirez C, Sastre I, Bullido MJ, Valdivieso F. ApoE4 is more efficient than E3 in brain access by herpes simplex virus type 1. Neuroreport. 2003;14:1825–7.

    Article  CAS  PubMed  Google Scholar 

  130. Toniutto P, Fabris C, Fumo E, et al. Carriage of the apolipoprotein E-epsilon4 allele and histologic outcome of recurrent hepatitis C after antiviral treatment. Am J Clin Pathol. 2004;122:428–33.

    Article  PubMed  Google Scholar 

  131. Wozniak MA, Itzhaki RF, Faragher EB, James MW, Ryder SD, Irving WL. Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus. Hepatology. 2002;36:456–63.

    Article  CAS  PubMed  Google Scholar 

  132. Corder EH, Robertson K, Lannfelt L, et al. HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med. 1998;4:1182–4.

    Article  CAS  PubMed  Google Scholar 

  133. Willnow TE. The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med (Berl). 1999;77:306–15.

    Article  CAS  Google Scholar 

  134. van den Elzen P, Garg S, Leon L, et al. Apolipoprotein-mediated pathways of lipid antigen presentation. Nature. 2005;437:906–10.

    Article  PubMed  CAS  Google Scholar 

  135. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U. S. A. 1999;96:12766–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U. S. A. 2013;110:7306–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Chang KS, Jiang J, Cai Z, Luo G. Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J Virol. 2007;81:13783–93. (Epub 2007 Oct 3.)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Faustino AF, Carvalho FA, Martins IC, et al. Dengue virus capsid protein interacts specifically with very low-density lipoproteins. Nanomedicine. 2014;10:247–55.

    Article  CAS  PubMed  Google Scholar 

  139. Huemer HP, Menzel HJ, Potratz D, et al. Herpes simplex virus binds to human serum lipoprotein. Intervirology. 1988;29:68–76.

    CAS  PubMed  Google Scholar 

  140. Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics. 2010;62:357–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Pandey JP. Immunoglobulin genes and immunity to herpes simplex virus type 1. J Infect Dis. 2012;206:143–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Atherton A, Armour KL, Bell S, Minson AC, Clark MR. The herpes simplex virus type 1 Fc receptor discriminates between IgG1 allotypes. Eur J Immunol. 2000;30:2540–7.

    Article  CAS  PubMed  Google Scholar 

  143. Muntasell A, Vilches C, Angulo A, Lopez-Botet M. Adaptive reconfiguration of the human NK-cell compartment in response to cytomegalovirus: a different perspective of the host-pathogen interaction. Eur J Immunol. 2013;43:1133–41.

    Article  CAS  PubMed  Google Scholar 

  144. Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science. 2007;317:617–9.

    Article  CAS  PubMed  Google Scholar 

  145. Veillette A, Perez-Quintero LA, Latour S. X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Curr Opin Allergy Clin Immunol. 2013;13:614–22.

    Article  CAS  PubMed  Google Scholar 

  146. Li FY, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ. XMEN disease: a new primary immunodeficiency affecting Mg2 + regulation of immunity against Epstein-Barr virus. Blood. 2014;123:2148–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Fernandez-Flores A. Epstein-Barr virus in cutaneous pathology. Am J Dermatopathol. 2013;35:763–86.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Miguel López-Botet (Universitat Pompeu Fabra, Barcelona, Spain) for comments on the manuscript and continued scientific advice. Manuela Moraru is currently supported by a grant (121532) from Fundació La Marató TV3, Barcelona. Our studies on genetics of the immune response to HSV-1 were successively supported by grants from Instituto de Salud Carlos III and Plan Nacional de I + D, Spain (SAF2010-22153-C03-03, BFU2005-04622, and FIS01/0381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Vilches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moraru, M., Vilches, C. (2015). Host Genomics and Response to Infectious Agents. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_4

Download citation

Publish with us

Policies and ethics