Skip to main content

Gene Therapy for Xerostomia

  • Chapter
  • First Online:
Genomics, Personalized Medicine and Oral Disease
  • 821 Accesses

Abstract

The notion of gene therapy has been discussed for ~ 50 years, but it traditionally was considered suitable for use only with inherited monogenic disorders and cancers refractory to conventional therapy. More recently, the use of gene therapy (gene transfer) for other conditions, including quality of life disorders that lack a suitable treatment, has become accepted. This chapter describes the development of a gene therapy for one such quality of life disorder, the xerostomia caused by radiation-induced salivary gland hypofunction, from its initial idea to the conduct of a first in-human clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum BJ. Evaluation of stimulated parotid flow rate in different age groups. J Dent Res. 1981;60:1292–6.

    Article  CAS  PubMed  Google Scholar 

  2. Fox PC, van der Ven PF, Sonies BC, et al. Xerostomia: evaluation of a symptom with increasing significance. J Am Dent Assoc. 1985;110:519–25.

    Article  CAS  PubMed  Google Scholar 

  3. Fox PC, Busch KA, Baum BJ. Subjective reports of xerostomia and objective measures of salivary gland performance. J Am Dent Assoc. 1987;115:581–4.

    Article  CAS  PubMed  Google Scholar 

  4. Fox PC, van der Ven PF, Baum BJ, et al. Pilocarpine for the treatment of xerostomia associated with salivary gland dysfunction. Oral Surg Oral Med Oral Pathol. 1986;61:243–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fox PC, Atkinson JC, Macynski AA, et al. Pilocarpine treatment of salivary gland hypofunction and dry mouth (xerostomia). Arch Int Med. 1990;151:1149–52.

    Google Scholar 

  6. Johnson JT, Ferretti GA, Nethery WJ, et al. Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer. N Engl J Med. 1993;329:390–5.

    Article  CAS  PubMed  Google Scholar 

  7. Baum BJ, Zheng C, Alevizos I, et al. Development of a gene transfer-based treatment for radiation-induced salivary hypofunction. Oral Oncol. 2010;46:4–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Delporte C, O’Connell BC, He X, et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A. 1997;94:3268–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341–6.

    Article  CAS  PubMed  Google Scholar 

  10. Whitsett JA, Dey CR, Stripp BR, et al. Human cystic fibrosis transmembrane conductance regulator directed to respiratory epithelial cells in transgenic mice. Nat Genet. 1992;2:13–20.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshimura K, Rosenfeld MA, Nakamura H, et al. Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after in vivo intratracheal plasmid mediated gene transfer. Nucleic Acids Res. 1992;20:3233–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Baum BJ, Moss J, Breul SD, et al. Association in normal human fibroblasts of newly elevated levels of adenosine 3’,5’-monophosphate with a selective decrease in collagen production. J Biol Chem. 1978;253:3391–4.

    CAS  PubMed  Google Scholar 

  13. Baum BJ, O’Connell BC. The impact of gene therapy on dentistry. J Am Dent Assoc. 1995;126:179–89.

    Article  CAS  PubMed  Google Scholar 

  14. Samuni Y, Baum BJ. Gene delivery in salivary glands: from the bench to the clinic. Biochem Biophys Acta. 2011;1812:1515–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Baum BJ. Salivary gland gene therapy: personal reflections. J Oral Biosci. 2014;56:38–42.

    Article  CAS  Google Scholar 

  16. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990;323:570–8.

    Article  CAS  PubMed  Google Scholar 

  17. Mastrangeli A, O’Connell BC, Aladib W, et al. Direct in vivo adenovirus-mediated gene transfer to salivary glands. Am J Physiol. 1994;266:G1146–55.

    CAS  PubMed  Google Scholar 

  18. Vitolo JM, Baum BJ. The use of gene transfer for the protection and repair of salivary glands. Oral Dis. 2002;8:183–91.

    Article  CAS  PubMed  Google Scholar 

  19. Preston G, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A. 1991;88:11110–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Shan Z, Li J, Zheng C, et al. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther. 2005;11:444–51.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng C, Goldsmith CM, Mineshiba F, et al. Toxicity and biodistribution of a first generation recombinant adenoviral vector, encoding aquaporin-1, after retroductal delivery to a single rat submandibular gland. Hum Gene Ther. 2006;17:1122–33.

    Article  CAS  PubMed  Google Scholar 

  22. Baum BJ, Alevizos A, Zheng C, et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci U S A. 2012;109:19403–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zheng C, Nikolov NP, Alevizos I, et al. Transient detection of E1-containing adenovirus in saliva after delivery of a first generation adenoviral vector to human parotid gland. J Gene Med. 2010;12:3–10.

    Article  CAS  PubMed  Google Scholar 

  24. Braddon VR, Chiorini JA, Wang S, et al. Adenoassociated virus mediated transfer of a functional water channel into salivary epithelial cells in vitro and in vivo. Hum Gene Ther. 1995;9:2777–85.

    Article  Google Scholar 

  25. Gao R, Yan X, Zheng C, et al. AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Ther. 2011;18:38–42.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zheng C, Cotrim AP, Sunshine AN, et al. Prevention of radiation-induced oral mucositis after adenoviral vector-mediated transfer of the keratinocyte growth factor cDNA to mouse submandibular glands. Clin Cancer Res. 2009;15:4641–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Timiri Shanmugam PS, Dayton RD, Palaniyandi S, et al. Recombinant AAV9-TLK1B administration ameliorates fractionated radiation-induced xerostomia. Hum Gene Ther. 2013;24:604–12.

    Article  PubMed  Google Scholar 

  28. Voutetakis A, Kok MR, Zheng C, et al. Reengineered salivary glands are stable endogenous bioreactors for systemic gene therapeutics. Proc Natl Acad Sci U S A. 2004;101:3053–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Passineau MJ, Fahrenholz T, Machen L, et al. α-Galactosidase A expressed in the salivary glands partially corrects organ biochemical deficits in the fabry mouse through endocrine trafficking. Hum Gene Ther. 2011;22:293–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rowzee AM, Perez-Riveros PJ, Zheng C, et al. Expression and secretion of human proinsulin-B10 from mouse salivary glands: implications for treatment of type 1 diabetes mellitus. PLoS One. 2013;8(3):e59222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I have been extremely fortunate since the outset of the AdhAQP1 project to work with so many wonderful and talented colleagues and collaborators. I am sincerely appreciative to a great many people, but in particular I would like to thank Profs. Brian O’Connell, Christine Delporte and Songlin Wang for their critical contributions to the pre-clinical development of the AdhAQP1 strategy. Dr. Changyu Zheng and Ms. Corinne Goldsmith also played important roles in the pre-clinical studies, as well as were key members of the clinical study team. Drs. Ilias Alevizos, Ana Cotrim, Gabor Illei and Nikolai Nikolov, all core members of the clinical study team, were instrumental to the success of the clinical study, as were the two extremely talented Research Nurses for this study; Mss. Linda McCullagh and Shuying Liu. Additionally, I had the remarkable good fortune to work throughout most of my career in the Intramural Research Program of the National Institute of Dental and Craniofacial Research, which supported my studies from 1982 to 2011. Finally, I am especially indebted to the 11 research subjects, who participated in this first in human, salivary gland gene therapy study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Baum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baum, B. (2015). Gene Therapy for Xerostomia. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_15

Download citation

Publish with us

Policies and ethics