Skip to main content

Abstract

Among a wide variety of human oral cancers, the most significant in terms of overall morbidity and mortality is squamous cell carcinoma of the head and neck (HNSCC). Until very recently the molecular pathogenesis of HNSCC was unknown, and few therapeutic options were available outside of surgery, standard cytotoxic chemotherapy and radiation. Recent epidemiologic and clinical studies have revealed two subsets of HNSCC, human papilloma virus (HPV)-associated and non HPV-associated disease, characterized by distinct pathogenesis, natural history, and prognosis. The latter is a carcinogen-induced tumor associated with high levels of genomic aberrations and presumed genomic instability, while the former is a virally-induced cancer that exhibits relatively fewer mutations. Classical oncogene mutations including PIK3CA and RAS are observed in both subsets of HNSCC but are relatively uncommon. Instead, numerous tumor suppressor pathways are commonly inactivated including p53, Rb/CDKN2A, NOTCH, and TGFβ/SMAD, as are a host of epigenetic regulatory enzymes. Deregulation of these genetic pathways alters key cellular processes within the stratified squamous epithelium including proliferation, terminal differentiation, cell survival, and adhesion and migration. Understanding how these factors and pathways interact in tumor progression will undoubtedly improve disease classification and prognostication, ultimately providing the foundation for new, more selective and effective therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hermsen M, Guervos MA, Meijer G, et al. New chromosomal regions with high-level amplifications in squamous cell carcinomas of the larynx and pharynx, identified by comparative genomic hybridization. J Pathol. 2001;194(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  2. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nature Rev Cancer. 2011;11(1):9–22.

    Article  CAS  Google Scholar 

  3. Slebos RJ, Yi Y, Ely K, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clinical Cancer Res: Official J Am Assoc Cancer Res. 2006;12(3 Pt 1):701–9.

    Article  CAS  Google Scholar 

  4. Smeets SJ, Braakhuis BJ, Abbas S, et al. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene. 2006;25(17):2558–64.

    Article  CAS  PubMed  Google Scholar 

  5. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  6. Licitra L, Perrone F, Bossi P, et al. High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J Clin Oncol. 2006;24(36):5630–6.

    Article  CAS  PubMed  Google Scholar 

  7. Posner MR, Hershock DM, Blajman CR, et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med. 2007;357(17):1705–15.

    Article  CAS  PubMed  Google Scholar 

  8. Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lacko M, Braakhuis BJ, Sturgis EM, et al. Genetic susceptibility to head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2014;89(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka A, Weinel S, Nagy N, et al. Germline mutation in ATR in autosomal-dominant oropharyngeal cancer syndrome. Am J Hum Genet. 2012;90(3):511–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kutler DI, Auerbach AD, Satagopan J, et al. High incidence of head and neck squamous cell carcinoma in patients with Fanconi anemia. Arch Otolaryngol. Head Neck Surg. 2003;129(1):106–12.

    Article  PubMed  Google Scholar 

  12. Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zack TI, Schumacher SE, Carter SL, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013;45(10):1134–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lui VW, Hedberg ML, Li H, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Disc. 2013;3(7):761–9.

    Article  CAS  Google Scholar 

  16. Pickering CR, Zhang J, Yoo SY, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Disc. 2013;3(7):770–81.

    Article  CAS  Google Scholar 

  17. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rothenberg SM, Ellisen LW. The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest. 2012;122(6):1951–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rothenberg SM, Mohapatra G, Rivera MN, et al. A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res. 2010;70(6):2158–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Human Mutat. 2007;28(6):622–9.

    Article  CAS  Google Scholar 

  22. Lang GA, Iwakuma T, Suh YA, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119(6):861–72.

    Article  CAS  PubMed  Google Scholar 

  23. Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 2004;119(6):847–60.

    Article  CAS  PubMed  Google Scholar 

  24. Brown CJ, Lain S, Verma CS, et al. Awakening guardian angels: drugging the p53 pathway. Nature Rev Cancer. 2009;9(12):862–73.

    Article  CAS  Google Scholar 

  25. Millon R, Muller D, Schultz I, et al. Loss of MDM2 expression in human head and neck squamous cell carcinomas and clinical significance. Oral Oncol. 2001;37(8):620–31.

    Article  CAS  PubMed  Google Scholar 

  26. Scheffner M, Werness BA, Huibregtse JM, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63(6):1129–36.

    Google Scholar 

  27. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248(4951):76–9.

    Google Scholar 

  28. Lindenbergh-van der Plas M, Brakenhoff RH, Kuik DJ, et al. Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17(11):3733–41.

    Article  CAS  PubMed  Google Scholar 

  29. Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Essmann F, Schulze-Osthoff K. Translational approaches targeting the p53 pathway for anti-cancer therapy. Br J Pharmacol. 2012;165(2):328–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Perez-Sayans M, Suarez-Penaranda JM, Gayoso-Diz P, et al. p16(INK4a)/CDKN2 expression and its relationship with oral squamous cell carcinoma is our current knowledge enough? Cancer Lett. 2011;306(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  32. Reed AL, Califano J, Cairns P, et al. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 1996;56(16):3630–3.

    CAS  PubMed  Google Scholar 

  33. Smeets SJ, Brakenhoff RH, Ylstra B, et al. Genetic classification of oral and oropharyngeal carcinomas identifies subgroups with a different prognosis. Cell Oncol. 2009;31(4):291–300.

    CAS  PubMed  Google Scholar 

  34. Dominguez G, Silva J, Garcia JM, et al. Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutat Res. 2003;530(1–2):9–17.

    Article  CAS  PubMed  Google Scholar 

  35. Ogi K, Toyota M, Ohe-Toyota M, et al. Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clinical Can Res. 2002;8(10):3164–71.

    CAS  Google Scholar 

  36. Sailasree R, Abhilash A, Sathyan KM, et al. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomarkers Prev. 2008;17(2):414–20.

    Article  CAS  PubMed  Google Scholar 

  37. Schache AG, Liloglou T, Risk JM, et al. Evaluation of human papilloma virus diagnostic testing in oropharyngeal squamous cell carcinoma: sensitivity, specificity, and prognostic discrimination. Clin Cancer Res. 2011;17(19):6262–271.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sheu JJ, Hua CH, Wan L, et al. Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res. 2009;69(6):2568–76.

    Article  CAS  PubMed  Google Scholar 

  39. Bova RJ, Quinn DI, Nankervis JS, et al. Cyclin D1 and p16INK4A expression predict reduced survival in carcinoma of the anterior tongue. Clin Cancer Res. 1999;5(10):2810–9.

    CAS  PubMed  Google Scholar 

  40. Fu M, Rao M, Bouras T, et al. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem. 2005;280(17):16934–41.

    Article  CAS  PubMed  Google Scholar 

  41. Jirawatnotai S, Hu Y, Michowski W, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474(7350):230–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Musgrove EA, Caldon CE, Barraclough J, et al. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558–72.

    Article  CAS  PubMed  Google Scholar 

  43. Dickson MA. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin Cancer Res. 2014;20(13):3379–83.

    Article  CAS  PubMed  Google Scholar 

  44. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4):649–61.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SY, Kumano K, Nakazaki K, et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 2009;100(5):920–6.

    Article  CAS  PubMed  Google Scholar 

  46. Malecki MJ, Sanchez-Irizarry C, Mitchell JL, et al. Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol. 2006;26(12):4642–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Article  CAS  PubMed  Google Scholar 

  49. Talora C, Cialfi S, Segatto O, et al. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp Cell Res. 2005;305(2):343–54.

    Article  CAS  PubMed  Google Scholar 

  50. Talora C, Sgroi DC, Crum CP, et al. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002;16(17):2252–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Chen J, Jette C, Kanki JP, et al. NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia. 2007;21(3):462–71.

    Article  PubMed  CAS  Google Scholar 

  52. Dotto GP. Notch tumor suppressor function. Oncogene. 2008;27(38):5115–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Nicolas M, Wolfer A, Raj K, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33(3):416–21.

    Article  CAS  PubMed  Google Scholar 

  54. Pear WS, Aster JC, Scott ML, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183(5):2283–91.

    Article  CAS  PubMed  Google Scholar 

  55. Koster MI. p63 in skin development and ectodermal dysplasias. J Invest Dermatol. 2010;130(10):2352–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Nguyen BC, Lefort K, Mandinova A, et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006;20(8):1028–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sasaki Y, Ishida S, Morimoto I, et al. The p53 family member genes are involved in the Notch signal pathway. J Biol Chem. 2002;277(1):719–24.

    Article  CAS  PubMed  Google Scholar 

  58. Wu G, Nomoto S, Hoque MO, et al. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 2003;63(10):2351–7.

    CAS  PubMed  Google Scholar 

  59. Ha L, Ponnamperuma RM, Jay S, et al. Dysregulated DeltaNp63alpha inhibits expression of Ink4a/arf, blocks senescence, and promotes malignant conversion of keratinocytes. PLoS One. 2011;6(7):e21877.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Keyes WM, Wu Y, Vogel H, et al. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 2005;19(17):1986–99.

    Google Scholar 

  61. Ramsey MR, Wilson C, Ory B, et al. FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma. J Clin Invest. 2013;123(8):3525–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Moretti F, Marinari B, Lo Iacono N, et al. A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias. J Clin Invest. 2010;120(5):1570–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sen GL, Boxer LD, Webster DE, et al. ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell. 2012;22(3):669–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zarnegar BJ, Webster DE, Lopez-Pajares V, et al. Genomic profiling of a human organotypic model of AEC syndrome reveals ZNF750 as an essential downstream target of mutant TP63. Am J Human Genet. 2012;91(3):435–43.

    Article  CAS  Google Scholar 

  65. Restivo G, Nguyen BC, Dziunycz P, et al. IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J. 2011;30(22):4571–85.

    Google Scholar 

  66. Thomason HA, Zhou H, Kouwenhoven EN, et al. Cooperation between the transcription factors p63 and IRF6 is essential to prevent cleft palate in mice. J Clin Invest. 2010;120(5):1561–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Qiu W, Schonleben F, Li X, et al. PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(5):1441–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Qiu W, Tong GX, Manolidis S, et al. Novel mutant-enriched sequencing identified high frequency of PIK3CA mutations in pharyngeal cancer. Int J Cancer (Journal international du cancer). 2008;122(5):1189–94.(

    Article  CAS  Google Scholar 

  69. Hibi K, Trink B, Patturajan M, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci U S A. 2000;97(10):5462–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Nichols AC, Palma DA, Chow W, et al. High frequency of activating PIK3CA mutations in human papillomavirus-positive oropharyngeal cancer. JAMA Otolaryngol—Head Neck Surg. 2013;139(6):617–22.

    Google Scholar 

  71. Henken FE, Banerjee NS, Snijders PJ, et al. PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitro. Mol Cancer. 2011;10:71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Okami K, Wu L, Riggins G, et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Res. 1998;58(3):509–11.

    CAS  PubMed  Google Scholar 

  74. Shao X, Tandon R, Samara G, et al. Mutational analysis of the PTEN gene in head and neck squamous cell carcinoma. Int J Cancer (Journal international du cancer). 1998;77(5):684–8.

    Article  CAS  Google Scholar 

  75. Anderson JA, Irish JC, Ngan BY. Prevalence of RAS oncogene mutation in head and neck carcinomas. J Otolaryngol. 1992;21(5):321–6.

    CAS  PubMed  Google Scholar 

  76. Saranath D, Chang SE, Bhoite LT, et al. High frequency mutation in codons 12 and 61 of H-ras oncogene in chewing tobacco-related human oral carcinoma in India. Br J Cancer. 1991;63(4):573–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Anderson JA, Irish JC, McLachlin CM, et al. H-ras oncogene mutation and human papillomavirus infection in oral carcinomas. Arch Otolaryngol—Head Neck Surg. 1994;120(7):755–60.

    Article  CAS  PubMed  Google Scholar 

  78. Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Scholl C, Frohling S, Dunn IF, et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 2009;137(5):821–34.

    Article  CAS  PubMed  Google Scholar 

  80. Singh A, Greninger P, Rhodes D, et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell. 2009;15(6):489–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Taoudi Benchekroun M, Saintigny P, Thomas SM, et al. Epidermal growth factor receptor expression and gene copy number in the risk of oral cancer. Cancer Prev Res. 2010;3(7):800–9.

    Article  CAS  Google Scholar 

  82. Temam S, Kawaguchi H, El-Naggar AK, et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol. 2007;25(16):2164–70.

    Article  CAS  PubMed  Google Scholar 

  83. Chung CH, Ely K, McGavran L, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol. 2006;24(25):4170–6.

    Article  CAS  PubMed  Google Scholar 

  84. Cohen EE, Lingen MW, Martin LE, et al. Response of some head and neck cancers to epidermal growth factor receptor tyrosine kinase inhibitors may be linked to mutation of ERBB2 rather than EGFR. Clin Cancer Res. 2005;11(22):8105–8.

    Article  CAS  PubMed  Google Scholar 

  85. Cohen EE, Rosen F, Stadler WM, et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2003;21(10):1980–7.

    Article  CAS  PubMed  Google Scholar 

  86. Kirby AM, A’Hern RP, D'Ambrosio C, et al. Gefitinib (ZD1839, Iressa) as palliative treatment in recurrent or metastatic head and neck cancer. Br J Cancer. 2006;94(5):631–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Soulieres D, Senzer NN, Vokes EE, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  88. Wirth LJ, Haddad RI, Lindeman NI, et al. Phase I study of gefitinib plus celecoxib in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23(28):6976–81.

    Article  CAS  PubMed  Google Scholar 

  89. Gaykalova DA, Mambo E, Choudhary A, et al. Novel insight into mutational landscape of head and neck squamous cell carcinoma. PLoS One. 2014;9(3):e93102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Li H, Wawrose JS, Gooding WE, et al. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Mol Cancer Res: MCR. 2014;12(4):571–82.

    Google Scholar 

  91. Michaud WA, Nichols AC, Mroz EA, et al. Bcl-2 blocks cisplatin-induced apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin Cancer Res. 2009;15(5):1645–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Blumenschein GR, Jr., Kies MS, Papadimitrakopoulou VA, et al. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs. 2008;26(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  93. He L, Torres-Lockhart K, Forster N, et al. Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Disc. 2013;3(3):324–37.

    Article  CAS  Google Scholar 

  94. Wang D, Song H, Evans JA, et al. Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis. 1997;18(11):2285–90.

    Article  CAS  PubMed  Google Scholar 

  95. Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17(1–2):41–58.

    Google Scholar 

  96. Qiu W, Schonleben F, Li X, et al. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4. Cancer Lett. 2007;245(1–2):163–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Bornstein S, White R, Malkoski S, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest. 2009;119(11):3408–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Han G, Lu SL, Li AG, et al. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest. 2005;115(7):1714–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Nakaya K, Yamagata HD, Arita N, et al. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene. 2007;26(36):5300–8.

    Article  CAS  PubMed  Google Scholar 

  100. Morris LG, Kaufman AM, Gong Y, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45(3):253–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Patel V, Rosenfeldt HM, Lyons R, et al. Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis. 2007;28(6):1145–52.

    Article  CAS  PubMed  Google Scholar 

  102. Yap LF, Jenei V, Robinson CM, et al. Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene. 2009;28(27):2524–34.

    Article  CAS  PubMed  Google Scholar 

  103. Nola S, Daigaku R, Smolarczyk K, et al. Ajuba is required for Rac activation and maintenance of E-cadherin adhesion. J Cell Biol. 2011;195(5):855–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. McCabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12.

    Article  CAS  PubMed  Google Scholar 

  105. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–91.

    Google Scholar 

  106. Hast BE, Cloer EW, Goldfarb D, et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 2014;74(3):808–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Adelstein DJ, Koyfman SA, El-Naggar AK, et al. Biology and management of salivary gland cancers. Semin Radiat Oncol. 2012;22(3):245–53.

    Article  PubMed  Google Scholar 

  108. Persson M, Andren Y, Mark J, et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A. 2009;106(44):18740–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Ho AS, Kannan K, Roy DM, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45(7):791–8.

    Article  CAS  PubMed  Google Scholar 

  110. Stephens PJ, Davies HR, Mitani Y, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest. 2013;123(7):2965–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Shao C, Sun W, Tan M, et al. Integrated, genome-wide screening for hypomethylated oncogenes in salivary gland adenoid cystic carcinoma. Clin Cancer Res. 2011;17(13):4320–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif W. Ellisen M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saladi, S., Ellisen, L. (2015). Oral Cancer. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_13

Download citation

Publish with us

Policies and ethics