Skip to main content

Premalignant Lesions

  • Chapter
  • First Online:
Genomics, Personalized Medicine and Oral Disease

Abstract

Head and neck squamous cell carcinoma can lead to high morbidity and mortality, and exhibits a significant difference in prognosis based on the clinical stages of diagnosis. Clinically demonstrable premalignant lesions precede most but not all cases of head and neck cancer; some oral premalignant lesions may not present with cytologic alterations. This chapter highlights the importance of recognizing oral premalignant lesions and identifying those with potential for malignant transformation. The concept of “field cancerization” is discussed, as is the emerging role of HPV-associated premalignancy. We also cover the well-recognized pathobiological mechanisms, including chromosomal instability and altered signaling pathways that inactivate tumor suppressor genes and/or activate oncogenes. Finally the role of the tumor microenvironment and the concept of “super competition” in the initiation and progression of oral premalignant lesions are addressed. In conclusion and in an attempt to emphasize the importance of early detection, possible applications of novel technologies such as expression profiling and current detection techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–16.

    Article  PubMed  Google Scholar 

  2. Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Siegel R, Ma J, Zou Z, Jemal A. Cancer Statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  4. Goy J, Hall SF, Feldman-Stewart D, Groome PA. Diagnostic delay and disease stage in head and neck cancer: a systematic review. Laryngoscope. 2009;119:889–98.

    Article  PubMed  Google Scholar 

  5. Warnakulasuriya S, Johnson NW, van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36:575–80.

    Article  CAS  PubMed  Google Scholar 

  6. Sciubba JJ. Oral cancer. The importance of early diagnosis and treatment. Am J Clin Dermatol. 2001;2:239–51.

    Article  CAS  PubMed  Google Scholar 

  7. Petti S. Pooled estimate of world leukoplakia prevalence: a systematic review. Oral Oncol. 2003;39:770–80.

    Article  PubMed  Google Scholar 

  8. Silverman S, Jr, Gorsky M, Lozada F. Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer. 1984;53:563–8.

    Article  PubMed  Google Scholar 

  9. Hsue SS, et al. Malignant transformation in 1458 patients with potentially malignant oral mucosal disorders: a follow-up study based in a Taiwanese hospital. J Oral Pathol Med. 2007;36:25–9.

    Article  PubMed  Google Scholar 

  10. Brouns E, et al. Malignant transformation of oral leukoplakia in a well-defined cohort of 144 patients. Oral Dis. 2014;20:19–24.

    Article  Google Scholar 

  11. Schepman KP, van der Meij EH, Smeele LE, van der Waal I. Malignant transformation of oral leukoplakia: a follow-up study of a hospital-based population of 166 patients with oral leukoplakia from The Netherlands. Oral Oncol. 1998;34:270–5.

    Article  CAS  PubMed  Google Scholar 

  12. Lee JJ, et al. Carcinoma and dysplasia in oral leukoplakias in Taiwan: prevalence and risk factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:472–80.

    Article  PubMed  Google Scholar 

  13. Woo SB, Grammer RL, Lerman MA. Keratosis of unknown significance and leukoplakia: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:713–24.

    Article  PubMed  Google Scholar 

  14. Kramer IR, El-Labban N, Lee KW. The clinical features and risk of malignant transformation in sublingual keratosis. Br Dent J. 1978;144:171–80.

    Article  CAS  PubMed  Google Scholar 

  15. Waldron CA, Shafer WG. Leukoplakia revisited. A clinicopathologic study. 3256 oral leukoplakias. Cancer. 1975;36:1386–92.

    Article  CAS  PubMed  Google Scholar 

  16. Lumerman H, Freedman P, Kerpel S. Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:321–9.

    Article  CAS  PubMed  Google Scholar 

  17. Liu W, et al. Oral cancer development in patients with leukoplakia–clinicopathological factors affecting outcome. PLoS One. 2012;7:e34773.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dost F, Le Cao K, Ford PJ, Ades C, Farah CS. Malignant transformation of oral epithelial dysplasia: a real-world evaluation of histopathologic grading. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:343–52.

    Article  CAS  PubMed  Google Scholar 

  19. Hansen LS, Olson JA, Silverman S, Jr. Proliferative verrucous leukoplakia. A long-term study of thirty patients. Oral Surg Oral Med Oral Pathol. 1985;60:285–98.

    Article  CAS  PubMed  Google Scholar 

  20. Silverman S, Jr, Gorsky M. Proliferative verrucous leukoplakia: a follow-up study of 54 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84:154–7.

    Article  PubMed  Google Scholar 

  21. Cabay RJ, Morton TH, Jr, Epstein JB. Proliferative verrucous leukoplakia and its progression to oral carcinoma: a review of the literature. J Oral Pathol Med. 2007;36:255–61.

    Article  PubMed  Google Scholar 

  22. Bagan J, Scully C, Jimenez Y, Martorell M. Proliferative verrucous leukoplakia: a concise update. Oral Dis. 2010;16:328–32.

    Article  CAS  PubMed  Google Scholar 

  23. Kramer IR, Lucas RB, Pindborg JJ, Sobin LH. Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral Surg Oral Med Oral Pathol. 1978;46:518–39.

    Article  CAS  PubMed  Google Scholar 

  24. Lay KM, Sein K, Myint A, Ko SK, Pindborg JJ. Epidemiologic study of 600 villagers of oral precancerous lesions in Bilugyun: preliminary report. Community Dent Oral Epidemiol. 1982;10:152–5.

    Article  CAS  PubMed  Google Scholar 

  25. Zain RB, et al. A national epidemiological survey of oral mucosal lesions in Malaysia. Community Dent Oral Epidemiol. 1997;25:377–83.

    Article  CAS  PubMed  Google Scholar 

  26. Shafer WG, Waldron CA. Erythroplakia of the oral cavity. Cancer. 1975;36:1021–8.

    Article  CAS  PubMed  Google Scholar 

  27. Amagasa T, et al. A study of the clinical characteristics and treatment of oral carcinoma in situ. Oral Surg Oral Med Oral Pathol. 1985;60:50–5.

    Article  CAS  PubMed  Google Scholar 

  28. Reichart PA, Philipsen HP. Oral erythroplakia–a review. Oral Oncol. 2005;41:551–61.

    Article  PubMed  Google Scholar 

  29. Woo SB. Oral pathology: a comprehensive atlas and text. 1st edn. USA: Saunders, an imprint of Elsevier Inc.; 2012.

    Google Scholar 

  30. Eversole LR. Dysplasia of the upper aerodigestive tract squamous epithelium. Head Neck Pathol. 2009;3:63–8.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Speight PM. Update on oral epithelial dysplasia and progression to cancer. Head Neck Pathol. 2007;1:61–6.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kujan O, et al. Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation. Oral Oncol. 2006;42:987–93.

    Article  PubMed  Google Scholar 

  33. Gale N, Zidar N, Poljak M, Cardesa A. Current views and perspectives on classification of squamous intraepithelial lesions of the head and neck. Head Neck Pathol. 2014;8:16–23.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lingen MW, et al. Genetics/epigenetics of oral premalignancy: current status and future research. Oral Dis. 2011;17(Suppl. 1):7–22.

    Article  PubMed  Google Scholar 

  35. Pindborg JJ, Daftary DK, Mehta FS. A follow-up study of sixty-one oral dysplastic precancerous lesions in Indian villagers. Oral Surg Oral Med Oral Pathol. 1977;43:383–90.

    Article  CAS  PubMed  Google Scholar 

  36. Li CC, Woo SB. Understanding the pathobiology of head and neck squamous cell carcinoma. Curr Oral Health Rep. 2014;1:196–203.

    Article  Google Scholar 

  37. Arduino PG, Bagan J, El-Naggar AK, Carrozzo M. Urban legends series: oral leukoplakia. Oral Dis. 2013;19:642–59.

    Article  CAS  PubMed  Google Scholar 

  38. Woo SB, Cashman EC, Lerman MA. Human papillomavirus-associated oral intraepithelial neoplasia. Mod Pathol. 2013;26:1288–97.

    Article  CAS  PubMed  Google Scholar 

  39. Warnakulasuriya S. Living with oral cancer: epidemiology with particular reference to prevalence and life-style changes that influence survival. Oral Oncol. 2010;46:407–10.

    Article  PubMed  Google Scholar 

  40. Friedlander PL. Genomic instability in head and neck cancer patients. Head Neck. 2001;23:683–91.

    Article  CAS  PubMed  Google Scholar 

  41. McBride KA, et al. Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol. 2014;11:260–71.

    Article  CAS  PubMed  Google Scholar 

  42. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113:6549–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Scully C, Langdon J, Evans J. Marathon of eponyms: 26 Zinsser-Engman-Cole syndrome (Dyskeratosis congenita). Oral Dis. 2012;18:522–3.

    Article  CAS  PubMed  Google Scholar 

  44. Kujan O, et al. Why oral histopathology suffers inter-observer variability on grading oral epithelial dysplasia: an attempt to understand the sources of variation. Oral Oncol. 2007;43:224–31.

    Article  PubMed  Google Scholar 

  45. Abbey LM, et al. The effect of clinical information on the histopathologic diagnosis of oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:74–7.

    Article  CAS  PubMed  Google Scholar 

  46. Califano J, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56:2488–92.

    CAS  PubMed  Google Scholar 

  47. Califano J, et al. Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin Cancer Res. 2000;6:347–52.

    CAS  PubMed  Google Scholar 

  48. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6:963–8.

    Article  CAS  PubMed  Google Scholar 

  49. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63:1727–30.

    CAS  PubMed  Google Scholar 

  50. Tabor MP, et al. Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res. 2001;7:1523–32.

    CAS  PubMed  Google Scholar 

  51. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–9.

    Article  CAS  PubMed  Google Scholar 

  52. Sen S. Aneuploidy and cancer. Curr Opin Oncol. 2000;12:82–8.

    Article  CAS  PubMed  Google Scholar 

  53. Oulton R, Harrington L. Telomeres, telomerase, and cancer: life on the edge of genomic stability. Curr Opin Oncol. 2000;12:74–81.

    Article  CAS  PubMed  Google Scholar 

  54. El-Naggar AK, et al. Localization of chromosome 8p regions involved in early tumorigenesis of oral and laryngeal squamous carcinoma. Oncogene. 1998;16:2983–7.

    Article  CAS  PubMed  Google Scholar 

  55. Partridge M, et al. Allelic imbalance at chromosomal loci implicated in the pathogenesis of oral precancer, cumulative loss and its relationship with progression to cancer. Oral Oncol. 1998;34:77–83.

    Article  CAS  PubMed  Google Scholar 

  56. Cavenee WK, et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature. 1983;305:779–84.

    Article  CAS  PubMed  Google Scholar 

  57. Hall JG. Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am J Hum Genet. 1988;43:355–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. White VA, McNeil BK, Horsman DE. Acquired homozygosity. (isodisomy) of chromosome 3 in uveal melanoma. Cancer Genet Cytogenet. 1998;102:40–5.

    Article  CAS  PubMed  Google Scholar 

  59. Groden J, Nakamura Y, German J. Molecular evidence that homologous recombination occurs in proliferating human somatic cells. Proc Natl Acad Sci U S A. 1990;87:4315–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Rosin MP, et al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin Cancer Res. 2000;6:357–62.

    CAS  PubMed  Google Scholar 

  61. Papadimitrakopoulou V, et al. Frequent inactivation of p16INK4a in oral premalignant lesions. Oncogene. 1997;14:1799–803.

    Article  CAS  PubMed  Google Scholar 

  62. Tanimoto K, et al. Abnormalities of the FHIT gene in human oral carcinogenesis. Br J Cancer. 2000;82:838–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Jiang WW, Fujii H, Shirai T, Mega H, Takagi M. Accumulative increase of loss of heterozygosity from leukoplakia to foci of early cancerization in leukoplakia of the oral cavity. Cancer. 2001;92:2349–56.

    Article  CAS  PubMed  Google Scholar 

  64. Tsui IF, Rosin MP, Zhang L, Ng RT, Lam WL. Multiple aberrations of chromosome 3p detected in oral premalignant lesions. Cancer Prev Res (Phila). 2008;1:424–9.

    Article  CAS  Google Scholar 

  65. Zhang L, et al. Loss of heterozygosity (LOH) profiles–validated risk predictors for progression to oral cancer. Cancer Prev Res (Phila). 2012;5:1081–9.

    Article  Google Scholar 

  66. El-Naggar AK, et al. Sequential loss of heterozygosity at microsatellite motifs in preinvasive and invasive head and neck squamous carcinoma. Cancer Res. 1995;55:2656–9.

    CAS  PubMed  Google Scholar 

  67. Magennis DP. Nuclear DNA in histological and cytological specimens: measurement and prognostic significance. Br J Biomed Sci. 1997;54:140–8.

    CAS  PubMed  Google Scholar 

  68. Pihan GA, et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 1998;58:3974–85.

    CAS  PubMed  Google Scholar 

  69. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A. 1998;95:2950–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Klanrit P, et al. DNA ploidy in proliferative verrucous leukoplakia. Oral Oncol. 2007;43:310–6.

    Article  CAS  PubMed  Google Scholar 

  71. Diwakar N, Sperandio M, Sherriff M, Brown A, Odell EW. Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis. Oral Oncol. 2005;41:416–22.

    Article  CAS  PubMed  Google Scholar 

  72. Abou-Elhamd KE, Habib TN. The flow cytometric analysis of premalignant and malignant lesions in head and neck squamous cell carcinoma. Oral Oncol. 2007;43:366–72.

    Article  PubMed  Google Scholar 

  73. Pentenero M, et al. DNA aneuploidy and dysplasia in oral potentially malignant disorders: association with cigarette smoking and site. Oral Oncol. 2009;45:887–90.

    Article  CAS  PubMed  Google Scholar 

  74. Torres-Rendon A, Stewart R, Craig GT, Wells M, Speight PM. DNA ploidy analysis by image cytometry helps to identify oral epithelial dysplasias with a high risk of malignant progression. Oral Oncol. 2009;45:468–73.

    Article  CAS  PubMed  Google Scholar 

  75. Gouvea AF, et al. High incidence of DNA ploidy abnormalities and increased Mcm2 expression may predict malignant change in oral proliferative verrucous leukoplakia. Histopathology. 2013;62:551–62.

    Article  PubMed  Google Scholar 

  76. Donadini A, et al. Oral cancer genesis and progression: DNA near-diploid aneuploidization and endoreduplication by high resolution flow cytometry. Cell Oncol. 2010;32:373–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Islam MN, Kornberg L, Veenker E, Cohen DM, Bhattacharyya I. Anatomic site based ploidy analysis of oral premalignant lesions. Head Neck Pathol. 2010;4:10–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Baretton G, et al. Prognostic significance of DNA ploidy in oral squamous cell carcinomas. A retrospective flow and image cytometric study with comparison of DNA ploidy in excisional biopsy specimens and resection specimens, primary, tumors, and lymph node metastases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:68–76.

    Article  CAS  PubMed  Google Scholar 

  79. Rubio Bueno P, Naval Gias L, Garcia Delgado R, Domingo Cebollada J, Diaz Gonzalez FJ. Tumor DNA content as a prognostic indicator in squamous cell carcinoma of the oral cavity and tongue base. Head Neck. 1998;20:232–9.

    Article  CAS  PubMed  Google Scholar 

  80. Hemmer J, Nagel E, Kraft K. DNA aneuploidy by flow cytometry is an independent prognostic factor in squamous cell carcinoma of the oral cavity. Anticancer Res. 1999;19:1419–22.

    CAS  PubMed  Google Scholar 

  81. Sperandio M, et al. Predictive value of dysplasia grading and DNA ploidy in malignant transformation of oral potentially malignant disorders. Cancer Prev Res (Phila). 2013;6:822–31.

    Article  CAS  Google Scholar 

  82. Siebers TJ, et al. Chromosome instability predicts the progression of premalignant oral lesions. Oral Oncol. 2013;49:1121–8.

    Article  CAS  PubMed  Google Scholar 

  83. Greider CW. Telomere length regulation. Annu Rev Biochem. 1996;65:337–65.

    Article  CAS  PubMed  Google Scholar 

  84. Watson JD. Origin of concatemeric T7 DNA. Nat New Biol. 1972;239:197–201.

    Article  CAS  PubMed  Google Scholar 

  85. Feng J, et al. The RNA component of human telomerase. Science. 1995;269:1236–41.

    Article  CAS  PubMed  Google Scholar 

  86. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–13.

    Article  CAS  PubMed  Google Scholar 

  87. De Lange T. Telomere dynamics and genome instability in human cancer. Cold Spring Harb Monogr Ser. 1995;29:265–94.

    Google Scholar 

  88. Nakayama J, et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet. 1998;18:65–8.

    Article  CAS  PubMed  Google Scholar 

  89. Shay JW, Wright WE. Telomeres and telomerase in normal and cancer stem cells. FEBS Lett. 2010;584:3819–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sumida T, et al. Detection of telomerase activity in oral lesions. J Oral Pathol Med. 1998;27:111–5.

    Article  CAS  PubMed  Google Scholar 

  91. Chang LY, et al. Telomerase activity and in situ telomerase RNA expression in oral carcinogenesis. J Oral Pathol Med. 1999;28:389–96.

    Article  CAS  PubMed  Google Scholar 

  92. Chen HH, et al. Expression of human telomerase reverse transcriptase (hTERT) protein is significantly associated with the progression, recurrence and prognosis of oral squamous cell carcinoma in Taiwan. Oral Oncol. 2007;43:122–9.

    Article  CAS  PubMed  Google Scholar 

  93. Mutirangura A, et al. Telomerase activity in oral leukoplakia and head and neck squamous cell carcinoma. Cancer Res. 1996;56:3530–3.

    CAS  PubMed  Google Scholar 

  94. Miyoshi Y, et al. Telomerase activity in oral cancer. Oral Oncol. 1999;35:283–9.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang L, Zhang W. Telomerase hTR and hTRT gene expression in oral precancerous lesions and squamous cell carcinomas. Chin J Dent Res. 1999;2:43–8.

    CAS  PubMed  Google Scholar 

  96. Liao J, Mitsuyasu T, Yamane K, Ohishi M. Telomerase activity in oral and maxillofacial tumors. Oral Oncol. 2000;36:347–52.

    Article  CAS  PubMed  Google Scholar 

  97. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  CAS  PubMed  Google Scholar 

  98. Kulkarni V, Saranath D. Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol. 2004;40:145–53.

    Article  CAS  PubMed  Google Scholar 

  99. Kato K, et al. Aberrant promoter hypermethylation of p16 and MGMT genes in oral squamous cell carcinomas and the surrounding normal mucosa. J Cancer Res Clin Oncol. 2006;132:735–43.

    Article  CAS  PubMed  Google Scholar 

  100. Yeh KT, et al. The correlation between CpG methylation on promoter and protein expression of E-cadherin in oral squamous cell carcinoma. Anticancer Res. 2002;22:3971–5.

    CAS  PubMed  Google Scholar 

  101. Maruya S, et al. Differential methylation status of tumor-associated genes in head and neck squamous carcinoma: incidence and potential implications. Clin Cancer Res. 2004;10:3825–30.

    Article  CAS  PubMed  Google Scholar 

  102. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    Article  CAS  PubMed  Google Scholar 

  103. Gorenchtein M, Poh CF, Saini R, Garnis C. MicroRNAs in an oral cancer context—from basic biology to clinical utility. J Dent Res. 2012;91:440–6.

    Article  CAS  PubMed  Google Scholar 

  104. Brito JA, Gomes CC, Guimaraes AL, Campos K, Gomez RS. Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med. 2014;43:211–6.

    Article  CAS  PubMed  Google Scholar 

  105. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–83.

    Article  CAS  PubMed  Google Scholar 

  106. Gasco M, Crook T. The p53 network in head and neck cancer. Oral Oncol. 2003;39:222–31.

    Article  CAS  PubMed  Google Scholar 

  107. Somers KD, et al. Frequent p53 mutations in head and neck cancer. Cancer Res. 1992;52:5997–6000.

    CAS  PubMed  Google Scholar 

  108. Swaminathan U, Joshua E, Rao UK, Ranganathan K. Expression of p53 and Cyclin D1 in oral squamous cell carcinoma and normal mucosa: an Immunohistochemical study. J Oral Maxillofac Pathol. 2012;16:172–7.

    Article  PubMed Central  PubMed  Google Scholar 

  109. van Houten VM, et al. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J Pathol. 2002;198:476–86.

    Article  PubMed  CAS  Google Scholar 

  110. Poeta ML, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Stransky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Oliveira LR, et al. Prognostic factors and survival analysis in a sample of oral squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:685–95.

    Article  PubMed  Google Scholar 

  113. Nasser W, Flechtenmacher C, Holzinger D, Hofele C, Bosch FX. Aberrant expression of p53, p16INK4a and Ki-67 as basic biomarker for malignant progression of oral leukoplakias. J Oral Pathol Med. 2011;40:629–35.

    Article  CAS  PubMed  Google Scholar 

  114. Schoelch ML, et al. Apoptosis-associated proteins and the development of oral squamous cell carcinoma. Oral Oncol. 1999;35:77–85.

    Article  CAS  PubMed  Google Scholar 

  115. Brennan PA, Conroy B, Spedding AV. Expression of inducible nitric oxide synthase and p53 in oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:624–9.

    Article  CAS  PubMed  Google Scholar 

  116. Vered M, Allon I, Dayan D. Maspin, p53, p63, and Ki-67 in epithelial lesions of the tongue: from hyperplasia through dysplasia to carcinoma. J Oral Pathol Med. 2009;38:314–20.

    Article  CAS  PubMed  Google Scholar 

  117. Cruz IB, et al. p53 expression above the basal cell layer in oral mucosa is an early event of malignant transformation and has predictive value for developing oral squamous cell carcinoma. J Pathol. 1998;184:360–8.

    Article  CAS  PubMed  Google Scholar 

  118. Murti PR, et al. p53 expression in oral precancer as a marker for malignant potential. J Oral Pathol Med. 1998;27:191–6.

    Article  CAS  PubMed  Google Scholar 

  119. Kodani I, et al. Expression of minichromosome maintenance 2 (MCM2), Ki-67, and cell-cycle-related molecules, and apoptosis in the normal-dysplasia-carcinoma sequence of the oral mucosa. Pathobiology. 2001;69:150–8.

    Article  CAS  PubMed  Google Scholar 

  120. Shah NG, et al. Molecular alterations in oral carcinogenesis: significant risk predictors in malignant transformation and tumor progression. Int J Biol Markers. 2007;22:132–43.

    CAS  PubMed  Google Scholar 

  121. Levrero M, et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;113(Pt 10):1661–70.

    CAS  PubMed  Google Scholar 

  122. Chen YK, Hsue SS, Lin LM. Expression of p63 protein and mRNA in oral epithelial dysplasia. J Oral Pathol Med. 2005;34:232–9.

    Article  CAS  PubMed  Google Scholar 

  123. Kovesi G, Szende B. Prognostic value of cyclin D1, p27, and p63 in oral leukoplakia. J Oral Pathol Med. 2006;35:274–7.

    Article  PubMed  Google Scholar 

  124. el-Deiry WS, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  125. Jiang H, et al. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene. 1994;9:3397–406.

    CAS  PubMed  Google Scholar 

  126. Schoelch ML, et al. Cell cycle proteins and the development of oral squamous cell carcinoma. Oral Oncol. 1999;35:333–42.

    Article  CAS  PubMed  Google Scholar 

  127. Xie X, Clausen OP, Boysen M. Prognostic significance of p21WAF1/CIP1 expression in tongue squamous cell carcinomas. Arch Otolaryngol Head Neck Surg. 2002;128:897–902.

    Article  PubMed  Google Scholar 

  128. Shintani S, et al. Expression of cell cycle control proteins in normal epithelium, premalignant and malignant lesions of oral cavity. Oral Oncol. 2002;38:235–43.

    Article  CAS  PubMed  Google Scholar 

  129. Choi HR, et al. Differential expressions of cyclin-dependent kinase inhibitors (p27 and p21) and their relation to p53 and Ki-67 in oral squamous tumorigenesis. Int J Oncol. 2003;22:409–14.

    CAS  PubMed  Google Scholar 

  130. Nemes JA, Nemes Z, Marton IJ. p21WAF1/CIP1 expression is a marker of poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 2005;34:274–9.

    Article  CAS  PubMed  Google Scholar 

  131. Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994;79:573–82.

    Article  CAS  PubMed  Google Scholar 

  132. Inaba T, et al. Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics. 1992;13:565–74.

    Article  CAS  PubMed  Google Scholar 

  133. Goodger NM, Gannon J, Hunt T, Morgan PR. Cell cycle regulatory proteins–an overview with relevance to oral cancer. Oral Oncol. 1997;33:61–73.

    Article  CAS  PubMed  Google Scholar 

  134. Michalides R, et al. Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res. 1995;55:975–8.

    CAS  PubMed  Google Scholar 

  135. Mineta H, Borg A, Dictor M, Wahlberg P, Wennerberg J. Correlation between p53 mutation and cyclin D1 amplification in had and neck squamous cell carcinoma. Oral Oncol. 1997;33:42–6.

    Article  CAS  PubMed  Google Scholar 

  136. Mineta H, et al. Cyclin D1 overexpression correlates with poor prognosis in patients with tongue squamous cell carcinoma. Oral Oncol. 2000;36:194–8.

    Article  CAS  PubMed  Google Scholar 

  137. Turatti E, da Costa Neves A, de Magalhaes MH, de Sousa SO. Assessment of c-Jun, c-Fos and cyclin D1 in premalignant and malignant oral lesions. J Oral Sci. 2005;47:71–6.

    Article  CAS  PubMed  Google Scholar 

  138. Ishida K, et al. Nuclear localization of beta-catenin involved in precancerous change in oral leukoplakia. Mol Cancer. 2007;6:62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Huang M, et al. Cyclin D1 gene polymorphism as a risk factor for oral premalignant lesions. Carcinogenesis. 2006;27:2034–7.

    Article  CAS  PubMed  Google Scholar 

  140. Ye Y, et al. Genetic variations in cell-cycle pathway and the risk of oral premalignant lesions. Cancer. 2008;113:2488–95.

    Article  PubMed Central  PubMed  Google Scholar 

  141. Ramakrishna A, et al. Cyclin D1 an early biomarker in oral carcinogenesis. J Oral Maxillofac Pathol. 2013;17:351–7.

    Article  PubMed Central  PubMed  Google Scholar 

  142. McDuff FK, Turner SD. Jailbreak: oncogene-induced senescence and its evasion. Cell Signal. 2011;23:6–13.

    Article  CAS  PubMed  Google Scholar 

  143. Horowitz JM, et al. Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci U S A. 1990;87:2775–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Soni S, et al. Alterations of rb pathway components are frequent events in patients with oral epithelial dysplasia and predict clinical outcome in patients with squamous cell carcinoma. Oncology. 2005;68:314–25.

    Article  CAS  PubMed  Google Scholar 

  145. Pande P, Mathur M, Shukla NK, Ralhan R. pRb and p16 protein alterations in human oral tumorigenesis. Oral Oncol. 1998;34:396–403.

    Article  CAS  PubMed  Google Scholar 

  146. Nakahara Y, et al. Alterations of Rb, p16(INK4A) and cyclin D1 in the tumorigenesis of oral squamous cell carcinomas. Cancer Lett. 2000;160:3–8.

    Article  CAS  PubMed  Google Scholar 

  147. Chen Q, Luo G, Li B, Samaranayake LP. Expression of p16 and CDK4 in oral premalignant lesions and oral squamous cell carcinomas: a semi-quantitative immunohistochemical study. J Oral Pathol Med. 1999;28:158–64.

    Article  CAS  PubMed  Google Scholar 

  148. Gologan O, Barnes EL, Hunt JL. Potential diagnostic use of p16INK4A, a new marker that correlates with dysplasia in oral squamoproliferative lesions. Am J Surg Pathol. 2005;29:792–6.

    Article  PubMed  Google Scholar 

  149. Soria JC, et al. Telomerase activation cooperates with inactivation of p16 in early head and neck tumorigenesis. Br J Cancer. 2001;84:504–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Bradley KT, Budnick SD, Logani S. Immunohistochemical detection of p16INK4a in dysplastic lesions of the oral cavity. Mod Pathol. 2006;19:1310–6.

    Article  CAS  PubMed  Google Scholar 

  151. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  152. Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008;87:14–32.

    Article  CAS  PubMed  Google Scholar 

  153. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993;53:3579–84.

    CAS  PubMed  Google Scholar 

  154. Ongkeko WM, Altuna X, Weisman RA, Wang-Rodriguez J. Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. Am J Clin Pathol. 2005;124:71–6.

    Article  CAS  PubMed  Google Scholar 

  155. Sok JC, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12:5064–73.

    Article  CAS  PubMed  Google Scholar 

  156. Bergler W, Bier H, Ganzer U. The expression of epidermal growth factor receptors in the oral mucosa of patients with oral cancer. Arch Otorhinolaryngol. 1989;246:121–5.

    Article  CAS  PubMed  Google Scholar 

  157. Shin DM, Ro JY, Hong WK, Hittelman WN. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. 1994;54:3153–9.

    CAS  PubMed  Google Scholar 

  158. Nagatsuka H, Ishiwari Y, Tsujigiwa H, Nakano K, Nagai N. Quantitation of epidermal growth factor receptor gene amplification by competitive polymerase chain reaction in pre-malignant and malignant oral epithelial lesions. Oral Oncol. 2001;37:599–604.

    Article  CAS  PubMed  Google Scholar 

  159. Srinivasan M, Jewell SD. Evaluation of TGF-alpha and EGFR expression in oral leukoplakia and oral submucous fibrosis by quantitative immunohistochemistry. Oncology. 2001;61:284–92.

    Article  CAS  PubMed  Google Scholar 

  160. Taoudi Benchekroun M, et al. Epidermal growth factor receptor expression and gene copy number in the risk of oral cancer. Cancer Prev Res (Phila). 2010;3:800–9.

    Article  CAS  Google Scholar 

  161. Mishima K, Inoue K, Hayashi Y. Overexpression of extracellular-signal regulated kinases on oral squamous cell carcinoma. Oral Oncol. 2002;38:468–74.

    Article  CAS  PubMed  Google Scholar 

  162. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80:179–85.

    Article  CAS  PubMed  Google Scholar 

  163. Massarelli E, et al. Akt activation correlates with adverse outcome in tongue cancer. Cancer. 2005;104:2430–6.

    Article  CAS  PubMed  Google Scholar 

  164. Tsui IF, et al. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer. 2009;125:2219–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Watanabe S, et al. Activation of PI3K-AKT pathway in oral epithelial dysplasia and early cancer of tongue. Bull Tokyo Dent Coll. 2009;50:125–33.

    Article  PubMed  Google Scholar 

  166. Kaur J, et al. Clinical significance of phosphatidyl inositol synthase overexpression in oral cancer. BMC Cancer. 2010;10:168.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  167. Woo SB, Grammer RL, Lerman MA. Keratosis of unknown significance and leukoplakia: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol 2014;118:713–24.

    Article  PubMed  Google Scholar 

  168. Rhiner C, Moreno E. Super competition as a possible mechanism to pioneer precancerous fields. Carcinogenesis. 2009;30:723–8.

    Article  CAS  PubMed  Google Scholar 

  169. Struhl G, Basler K. Organizing activity of wingless protein in Drosophila. Cell. 1993;72:527–40.

    Article  CAS  PubMed  Google Scholar 

  170. Moreno E, Basler K. dMyc transforms cells into super-competitors. Cell. 2004;117:117–29.

    Article  CAS  PubMed  Google Scholar 

  171. Allen CT, Lewis JS, Jr, El-Mofty SK, Haughey BH, Nussenbaum B. Human papillomavirus and oropharynx cancer: biology, detection and clinical implications. Laryngoscope. 2010;120:1756–72.

    Article  PubMed  Google Scholar 

  172. Sugiyama M, et al. Detection of human papillomavirus-16 and HPV-18 DNA in normal, dysplastic, and malignant oral epithelium. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95:594–600.

    Article  PubMed  Google Scholar 

  173. Szarka K, et al. Progressive increase of human papillomavirus carriage rates in potentially malignant and malignant oral disorders with increasing malignant potential. Oral Microbiol Immunol. 2009;24:314–8.

    Article  CAS  PubMed  Google Scholar 

  174. Kreimer AR, et al. Incidence and clearance of oral human papillomavirus infection in men: the HIM cohort study. Lancet. 2013;382:877–87.

    Article  PubMed Central  PubMed  Google Scholar 

  175. Fornatora M, Jones AC, Kerpel S, Freedman P. Human papillomavirus-associated oral epithelial dysplasia. (koilocytic dysplasia): an entity of unknown biologic potential. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:47–56.

    Article  CAS  PubMed  Google Scholar 

  176. Daley T, Birek C, Wysocki GP. Oral bowenoid lesions: differential diagnosis and pathogenetic insights. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:466–73.

    Article  CAS  PubMed  Google Scholar 

  177. Buajeeb W, Poomsawat S, Punyasingh J, Sanguansin S. Expression of p16 in oral cancer and premalignant lesions. J Oral Pathol Med. 2009;38:104–8.

    Article  PubMed  Google Scholar 

  178. Ishibashi M, et al. The prevalence of human papillomavirus in oral premalignant lesions and squamous cell carcinoma in comparison to cervical lesions used as a positive control. Int J Clin Oncol. 2011;16:646–53.

    Article  CAS  PubMed  Google Scholar 

  179. McCord C, et al. Association of high-risk human papillomavirus infection with oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:541–9.

    Article  PubMed  Google Scholar 

  180. Fakhry C, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.

    Article  CAS  PubMed  Google Scholar 

  181. Ang KK, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Salazar CR, et al. Human papillomavirus-associated head and neck squamous cell carcinoma survival: a comparison by tumor site and initial treatment. Head Neck Pathol. 2014;8:77–87.

    Article  PubMed Central  PubMed  Google Scholar 

  183. Izzo JG, et al. Dysregulated cyclin D1 expression early in head and neck tumorigenesis: in vivo evidence for an association with subsequent gene amplification. Oncogene. 1998;17:2313–22.

    Article  CAS  PubMed  Google Scholar 

  184. Tabor MP, et al. Comparative molecular and histological grading of epithelial dysplasia of the oral cavity and the oropharynx. J Pathol. 2003;199:354–60.

    Article  CAS  PubMed  Google Scholar 

  185. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  186. Yakob M, Fuentes L, Wang MB, Abemayor E, Wong DT. Salivary biomarkers for detection of oral squamous cell carcinoma—current state and recent advances. Curr Oral Health Rep. 2014;1:133–41.

    Article  PubMed Central  PubMed  Google Scholar 

  187. Dorsey K, Agulnik M. Promising new molecular targeted therapies in head and neck cancer. Drugs. 2013;73:315–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Cheng Li DDS, MS, DMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, CC., Li, Z., Menon, R., Woo, SB. (2015). Premalignant Lesions. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_12

Download citation

Publish with us

Policies and ethics