Skip to main content

Fundamentals of Genetics and Genomics

  • Chapter
  • First Online:
Genomics, Personalized Medicine and Oral Disease

Abstract

When we think about genetics, we typically think of patterns of inheritance that affect us and our environment. Will our kids have blue eyes or brown? Is there a risk of a particular disease in our family? Can I eat a gluten-dense pizza with impunity? Rarely do most of us give much thought to the biological processes that control the variables that impact phenotypes. But as more and more has been learned about biology, and especially human molecular biology, it has become clear that almost every physiologic function and risk of pathology, whether organic or behavioral is, at least in part, genetically controlled. Genetics studies the individual genes, while genomics is more dynamic in that it looks at the interaction between genes and genes and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alterovitz G, Tuthill C, Rios I, et al. Personalized medicine for mucositis: Bayesian networks identify unique gene clusters which predict the response to gamma-D-glutamyl-L-tryptophan (SCV-07) for the attenuation of chemoradiation-induced oral mucositis. Oral Oncol. 2011;47:951–5.

    Article  CAS  PubMed  Google Scholar 

  2. Arimondo PB, et al. Epigenetics. Biochim. 2012;94:2191–2.

    Article  CAS  Google Scholar 

  3. Ayarpadikannan S, Kim HS. The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. Genomics Inform. 2014; 12:98–104.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Blau N, Hennermann JB, Langenbeck U, et al. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab. 2011;104(Suppl):S2–9.

    Article  CAS  PubMed  Google Scholar 

  5. Borras E, Dotor E, Arcusa A, et al. High-resolution melting analysis of the common c.1905+1G>A mutation causing dihydropyrimidine dehydrogenase deficiency and lethal 5-fluorouracil toxicity. Front Genet. 2013;17:312.

    Google Scholar 

  6. Castaldo P, Magi S, Nasti AA, et al. Clinical pharmacogenetics of methotrexate. Curr Drug Metab. 2011;12:278–86.

    Article  CAS  PubMed  Google Scholar 

  7. Fixler J, Styles L. Sickle cell disease. Pediatr Clin North Am. 2002;49:1193–210.

    Article  PubMed  Google Scholar 

  8. Ginsburg GS, Willard HF, editors. Essentials of genomic and personalized medicine 2010. San Diego: Academic; 2010.

    Google Scholar 

  9. Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet. 2009;18:R1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hollox EJ, Hoh BP. Human copy number variation and infectious disease. Hum Genet. 2014;133:1217–33.

    Article  CAS  PubMed  Google Scholar 

  11. Lesko LJ. Personalized medicine: elusive dream or imminent reality? Clin Pharmacol Ther. 2007;81:807–16.

    Article  CAS  PubMed  Google Scholar 

  12. Lod S, et al. The influence of epigenetics in relation to oral health. Int J Dent Hyg. 2013;12:48–54.

    Article  PubMed  Google Scholar 

  13. McCavit TL. Sickle cell disease. Pediatr Rev. 2012;33:195–204.

    Article  PubMed  Google Scholar 

  14. Nooka AK, Johnson HR, Kaufman JL, et al. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2014;20:852–7.

    Article  CAS  Google Scholar 

  15. Palladino MA. Understanding the human genome project. 2nd ed. The benjamin cummings special topics in biology series. San Francisco: Pearson Publishers; 2006.

    Google Scholar 

  16. Portin P. The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. J Genet. 2014;93:293–302.

    Article  CAS  PubMed  Google Scholar 

  17. Quackenbush J. The human genome. Watertown: Charlesbridge Publishers; 2011.

    Google Scholar 

  18. Rosmarin D, Palles C, Church D, et al. Genetic markers of toxicity for capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-analysis. J Clin Oncol. 2014;32:1031–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sonis S, Antin J, Tetaldi M, et al. SNP-based Bayesian networks can predict oral mucositis risk in autologous stem cell transplant recipients. Oral Dis. 2013;19:721–7.

    Article  PubMed  Google Scholar 

  20. Syvanen AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet. 2001;2:930–42.

    Article  CAS  PubMed  Google Scholar 

  21. Watson JD, Circk FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Sonis DMD, DMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sonis, S. (2015). Fundamentals of Genetics and Genomics. In: Sonis, DMD, DMSc, S. (eds) Genomics, Personalized Medicine and Oral Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-17942-1_1

Download citation

Publish with us

Policies and ethics