Skip to main content

Part of the book series: Science Policy Reports ((SCIPOLICY))

Abstract

Cell-matrix adhesions function as structural anchor points for the organization of the actin cytoskeleton. Integrin engagement regulates the activity of several members of the Rho family of small guanosine triphosphatases (GTPases), which mediate rapid changes in cytoskeletal dynamics. The activity of Rho GTPases is principally controlled by the balance between the binding of guanine nucleotide exchange factors (GEFs) or GTPase-activating proteins (GAPs). Three family members—Rac, Rho, and Cdc42—are well-studied regulators of cell motility. Rac induces the assembly of focal complexes and actin polymerization during the formation of lamellipodia. Rho induces the formation of stress fibers, whereas Cdc42 induces actin polymerization for the formation of filopodia. The Rho family of small GTPases conveys unique biological effects through distinct effector proteins that act through different signaling pathways. These GTPases also play pivotal roles in reorganization of the actin cytoskeleton and cell movement in invading cancer cells. Perhaps Rho GTPases play a role in regulating the ability of the physical microenvironment and mechanical forces to drive cancer? This chapter provides an overview of the research being done to characterize the role that the physical and genetic drivers of cell motility play in cancer development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aplin, A.E., Howe, A., Alahari, S.K., Juliano, R.L.: Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–263 (1998)

    Google Scholar 

  • Arjonen, A., Kaukonen, R., Ivaska, J.: Filopodia and adhesion in cancer cell motility. Cell Adh. Migr. 5, 421–430 (2011)

    Article  Google Scholar 

  • Aslan, J.E., McCarty, O.J.T.: Rho GTPases in platelet function. J. Thromb. Haemost. 11, 35–46 (2013)

    Article  Google Scholar 

  • Baskaran, Y., Ng, Y.W., Selamat, W., Ling, F.T., Manser, E.: Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep. 13, 653–659 (2012)

    Article  Google Scholar 

  • Bishop, A.L., Hall, A.: Rho GTPases and their effector proteins. Biochem. J. 348(Pt 2), 241–255 (2000)

    Article  Google Scholar 

  • Bostner, J., Ahnström Waltersson, M., Fornander, T., Skoog, L., Nordenskjöld, B., Stål, O.: Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene 26, 6997–7005 (2007)

    Article  Google Scholar 

  • Breitsprecher, D., Koestler, S.A., Chizhov, I., Nemethova, M., Mueller, J., Goode, B.L., Small, J.V., Rottner, K., Faix, J.: Cofilin cooperates with fascin to disassemble filopodial actin filaments. J. Cell Sci. 124, 3305–3318 (2011)

    Article  Google Scholar 

  • Burridge, K., Wennerberg, K.: Rho and Rac take center stage. Cell 116, 167–179 (2004)

    Article  Google Scholar 

  • Butcher, D.T., Alliston, T., Weaver, V.M.: A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009)

    Article  Google Scholar 

  • Carey, S.P., Kraning-Rush, C.M., Williams, R.M., Reinhart-King, C.A.: Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33, 4157–4165 (2012)

    Article  Google Scholar 

  • Cary, L.A., Han, D.C., Guan, J.L.: Integrin-mediated signal transduction pathways. Histol. Histopathol. 14, 1001–1009 (1999)

    Google Scholar 

  • Cavalcanti-Adam, E.A., Micoulet, A., Blummel, J., Auernheimer, J., Kessler, H., Spatz, J.P.: Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur. J. Cell Biol. 85, 219–224 (2006)

    Article  Google Scholar 

  • Chan, P.M., Manser, E.: PAKs in human disease. Prog. Mol. Biol. Transl. Sci. 106, 171–187 (2012)

    Article  Google Scholar 

  • Ching, Y.P., Leong, V.Y., Lee, M.F., Xu, H.T., Jin, D.Y., Ng, I.O.: P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res. 67, 3601–3608 (2007)

    Article  Google Scholar 

  • Etienne-Manneville, S., Hall, A.: Rho GTPases in cell biology. Nature 420, 629–635 (2002)

    Article  ADS  Google Scholar 

  • Gray, R.S., Cheung, K.J., Ewald, A.J.: Cellular mechanisms regulating epithelial morphogenesis and cancer invasion. Curr. Opin. Cell Biol. 22, 640–650 (2010)

    Article  Google Scholar 

  • Hall, A.: Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998)

    Article  ADS  Google Scholar 

  • Harunaga, J.S., Yamada, K.M.: Cell-matrix adhesions in 3D. Matrix Biol. 30, 363–368 (2011)

    Article  Google Scholar 

  • Heasman, S.J., Ridley, A.J.: Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008)

    Article  Google Scholar 

  • Huttenlocher, A., Horwitz, A.R.: Integrins in cell migration. Cold Spring Harb. Perspect. Biol. 3, a005074 (2011)

    Article  Google Scholar 

  • Huveneers, S., Danen, E.H.: Adhesion signaling – crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059–1069 (2009)

    Article  Google Scholar 

  • Ingber, D.E.: Mechanosensation through integrins: cells act locally but think globally. Proc. Natl. Acad. Sci. U. S. A. 100, 1472–1474 (2003)

    Article  ADS  Google Scholar 

  • Insall, R.H., Machesky, L.M.: Actin dynamics at the leading edge: from simple machinery to complex networks. Dev. Cell 17, 310–322 (2009)

    Article  Google Scholar 

  • Jaffe, A.B., Hall, A.: Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005)

    Article  Google Scholar 

  • Jean, C., Gravelle, P., Fournie, J.J., Laurent, G.: Influence of stress on extracellular matrix and integrin biology. Oncogene 30, 2697–2706 (2011)

    Article  Google Scholar 

  • Kaibuchi, K., Kuroda, S., Amano, M.: Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459–486 (1999)

    Article  Google Scholar 

  • Khalil, A.A., Friedl, P.: Determinants of leader cells in collective cell migration. Integr. Biol. (Camb.) 2, 568–574 (2010)

    Article  Google Scholar 

  • Kim, J.H., Serra-Picamal, X., Tambe, D.T., Zhou, E.H., Park, C.Y., Sadati, M., Park, J.A., Krishnan, R., Gweon, B., Millet, E., Butler, J.P., Trepat, X., Fredberg, J.J.: Propulsion and navigation within the advancing monolayer sheet. Nat. Mater. 12, 856–863 (2013)

    Article  ADS  Google Scholar 

  • Kohler, S., Schaller, V., Bausch, A.R.: Collective dynamics of active cytoskeletal networks. PLoS One 6, e23798 (2011)

    Article  ADS  Google Scholar 

  • Lammermann, T., Bader, B.L., Monkley, S.J., Worbs, T., Wedlich-Soldner, R., Hirsch, K., Keller, M., Forster, R., Critchley, D.R., Fassler, R., Sixt, M.: Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)

    Article  ADS  Google Scholar 

  • Lauth, M.: RAS and Hedgehog–partners in crime. Front. Biosci. 17, 2259–2270 (2011)

    Article  Google Scholar 

  • Liu, P., Cheng, H., Roberts, T.M., Zhao, J.J.: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009)

    Article  Google Scholar 

  • Machesky, L.M., Gould, K.L.: The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell Biol. 11, 117–121 (1999)

    Article  Google Scholar 

  • Machesky, L.M., Insall, R.H.: Signaling to actin dynamics. J. Cell Biol. 146, 267–272 (1999)

    Article  Google Scholar 

  • Mardilovich, K., Olson, M.F., Baugh, M.: Targeting Rho GTPase signaling for cancer therapy. Future Oncol. 8, 165–177 (2012)

    Article  Google Scholar 

  • Mulloy, J.C., Cancelas, J.A., Filippi, M.D., Kalfa, T.A., Guo, F., Zheng, Y.: Rho GTPases in hematopoiesis and hemopathies. Blood 115, 936–947 (2010)

    Article  Google Scholar 

  • Oser, M., Condeelis, J.: The cofilin activity cycle in lamellipodia and invadopodia. J. Cell. Biochem. 108, 1252–1262 (2009)

    Article  Google Scholar 

  • Parisi, F., Vidal, M.: Epithelial delamination and migration: lessons from Drosophila. Cell Adh. Migr. 5, 366–372 (2011)

    Article  Google Scholar 

  • Parsons, J.T., Horwitz, A.R., Schwartz, M.A.: Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010)

    Article  Google Scholar 

  • Pinner, S., Sahai, E.: Imaging amoeboid cancer cell motility in vivo. J. Microsc. 231, 441–445 (2008)

    Article  MathSciNet  Google Scholar 

  • Pollard, T.D., Blanchoin, L., Mullins, R.D.: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000)

    Article  Google Scholar 

  • Reister-Gottfried, E., Sengupta, K., Lorz, B., Sackmann, E., Seifert, U., Smith, A.S.: Dynamics of specific vesicle-substrate adhesion: from local events to global dynamics. Phys. Rev. Lett. 101, 208103 (2008)

    Article  ADS  Google Scholar 

  • Ridley, A.J.: Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471–477 (2001)

    Article  Google Scholar 

  • Ross, R.S.: Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors. Cardiovasc. Res. 63, 381–390 (2004)

    Article  ADS  Google Scholar 

  • Rottner, K., Stradal, T.E.: Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol. 23, 569–578 (2011)

    Article  Google Scholar 

  • Rowinsky, E.K.: Signal events: cell signal transduction and its inhibition in cancer. Oncologist 8(Suppl 3), 5–17 (2003)

    Article  Google Scholar 

  • Schaller, M.D.: Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J. Cell Sci. 123, 1007–1013 (2010)

    Article  Google Scholar 

  • Solon, J., Kaya-Copur, A., Colombelli, J., Brunner, D.: Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009)

    Article  Google Scholar 

  • Tambe, D.T., Hardin, C.C., Angelini, T.E., Rajendran, K., Park, C.Y., Serra-Picamal, X., Zhou, E.H., Zaman, M.H., Butler, J.P., Weitz, D.A., Fredberg, J.J., Trepat, X.: Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011)

    Article  ADS  Google Scholar 

  • Thompson, E.W., Newgreen, D.F., Tarin, D.: Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 65, 5991–5995 (2005). discussion 5995

    Google Scholar 

  • Trepat, X., Fredberg, J.J.: Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol. 21, 638–646 (2011)

    Article  Google Scholar 

  • van Zijl, F., Krupitza, G., Mikulits, W.: Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat. Res. 728, 23–34 (2011)

    Article  Google Scholar 

  • Vega, F.M., Ridley, A.J.: Rho GTPases in cancer cell biology. FEBS Lett. 582, 2093–2101 (2008)

    Article  Google Scholar 

  • Wang, X., He, L., Wu, Y.I., Hahn, K.M., Montell, D.J.: Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat. Cell Biol. 12, 591–597 (2010)

    Article  Google Scholar 

  • Wong, L.L., Lam, I.P., Wong, T.Y., Lai, W.L., Liu, H.F., Yeung, L.L., Ching, Y.P.: IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-κB activation. PLoS One 8, e68843 (2013)

    Article  ADS  Google Scholar 

  • Yamada, K.M., Geiger, B.: Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9, 76–85 (1997)

    Article  Google Scholar 

  • Yamao, M., Naoki, H., Ishii, S.: Multi-cellular logistics of collective cell migration. PLoS One 6, e27950 (2011)

    Article  ADS  Google Scholar 

  • Yu, X., Machesky, L.M.: Cells assemble invadopodia-like structures and invade into matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. PLoS One 7, e30605 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen McCarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 US Government

About this chapter

Cite this chapter

McCarty, O. (2016). The Dynamics of Cell Motility. In: Janmey, P., et al. Physical Sciences and Engineering Advances in Life Sciences and Oncology. Science Policy Reports. Springer, Cham. https://doi.org/10.1007/978-3-319-17930-8_6

Download citation

Publish with us

Policies and ethics