Skip to main content

Part of the book series: Science Policy Reports ((SCIPOLICY))

Abstract

The physical structure of a tumor is determined by “solid,” structural components such as actin and collagen, but most of its volume is fluid. Fluid flows through the blood vessels and bathes the extravascular tissue. The structural microenvironment of a solid tumor plays a role in tumor physiology by compartmentalizing tissues and providing a dynamic substrate to support cell migration and differentiation (see Chaps. 3 and 4), but the fluid phase is equally important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003)

    Article  Google Scholar 

  • Boryskina, O.P., Al-Kilani, A., Fleury, V.: Body plan in tetrapods: is it patterned by a hyperbolic tissue flow? Cell Cycle 10, 3801–3802 (2011)

    Article  Google Scholar 

  • Boucher, Y., Leunig, M., Jain, R.K.: Tumor angiogenesis and interstitial hypertension. Cancer Res. 56, 4264–4266 (1996)

    Google Scholar 

  • Budd, G.T., Cristofanilli, M., Ellis, M.J., Stopeck, A., Borden, E., Miller, M.C., Matera, J., Repollet, M., Doyle, G.V., Terstappen, L.W.M.M., Hayes, D.: Circulating tumor cells versus imaging—predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12, 6403–6409 (2006)

    Article  Google Scholar 

  • Hagendoorn, J., Tong, R., Fukumura, D., Lin, Q., Lobo, J., Padera, T.P., Xu, L., Kucherlapati, R., Jain, R.K.: Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res. 66, 3360–3364 (2006)

    Article  Google Scholar 

  • Hayes, D.F., Cristofanilli, M., Budd, G.T., Ellis, M.J., Stopeck, A., Miller, M.C., Matera, J., Allard, W.J., Doyle, G.V., Terstappen, L.W.M.M.: Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006)

    Article  Google Scholar 

  • Jain, R.K.: Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65 (1994)

    Article  ADS  Google Scholar 

  • Jain, R.K.: Delivery of molecular medicine to solid tumors. Science 271, 1079–1080 (1996)

    Article  ADS  Google Scholar 

  • Jain, R.K.: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)

    Article  Google Scholar 

  • Jain, A., Munn, L.L.: Determinants of leukocyte margination in rectangular microchannels. PLoS One 4, e7104 (2009)

    Article  ADS  Google Scholar 

  • Jeong, G.S., Han, S., Shin, Y., Kwon, G.H., Kamm, R.D., Lee, S.H., Chung, S.: Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal. Chem. 83, 8454–8459 (2011)

    Article  Google Scholar 

  • Kirby, B.J., Jodari, M., Loftus, M.S., Gakhar, G., Pratt, E.D.: Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 7, e35976 (2012)

    Article  ADS  Google Scholar 

  • le Noble, F., Moyon, D., Pardanaud, L., Yuan, L., Djonov, V., Matthijsen, R., Breant, C., Fleury, V., Eichmann, A.: Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004)

    Article  Google Scholar 

  • Liao, S., Cheng, G., Conner, D.A., Huang, Y., Kucherlapati, R.S., Munn, L.L., Ruddle, N.H., Jain, R.K., Fukumura, D., Padera, T.P.: Impaired lymphatic contraction associated with immunosuppression. Proc. Natl. Acad. Sci. U. S. A. 108, 18784–18789 (2011)

    Article  ADS  Google Scholar 

  • Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U.J., Tompkins, R.G., Haber, D.A., Toner, M.: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)

    Article  ADS  Google Scholar 

  • Nieva, J., Wendel, M., Luttgen, M.S., Marrinucci, D., Bazhenova, L., Kolatkar, A., Santala, R., Whittenberger, B., Burke, J., Torrey, M., Bethel, K., Kuhn, P.: High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis. Phys. Biol. 9, 016004 (2012)

    Article  ADS  Google Scholar 

  • Padera, T.P., Kadambi, A., di Tomaso, E., Carreira, C.M., Brown, E.B., Boucher, Y., Choi, N.C., Mathisen, D., Wain, J., Mark, E.J., Munn, L.L., Jain, R.K.: Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002)

    Article  ADS  Google Scholar 

  • Pinho, M.C., Polaskova, P., Jennings, D., Wen, P.Y., Jain, R.K., Sorensen, A.G., Gerstner, E.R., Batchelor, T.: Impact of adjuvant anti-VEGF therapy on treatment-related pseudoprogression in patients with newly diagnosed glioblastoma receiving chemoradiation with or without anti-VEGF therapy. Paper presented at: 2012 ASCO annual meeting (2012)

    Google Scholar 

  • Polacheck, W.J., Charest, J.L., Kamm, R.D.: Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. U. S. A. 108, 11115–11120 (2011)

    Article  Google Scholar 

  • Pries, A.R., Cornelissen, A.J., Sloot, A.A., Hinkeldey, M., Dreher, M.R., Hopfner, M., Dewhirst, M.W., Secomb, T.W.: Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput. Biol. 5, e1000394 (2009)

    Article  ADS  Google Scholar 

  • Pries, A.R., Hopfner, M., le Noble, F., Dewhirst, M.W., Secomb, T.W.: The shunt problem: control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer 10, 587–593 (2010)

    Article  Google Scholar 

  • Pries, A.R., Reglin, B., Secomb, T.W.: Modeling of angioadaptation: insights for vascular development. Int. J. Dev. Biol. 55, 399–405 (2011)

    Article  Google Scholar 

  • Sasai, Y.: Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318–326 (2013)

    Article  ADS  Google Scholar 

  • Sasai, Y., Eiraku, M., Suga, H.: In vitro organogenesis in three dimensions: self-organising stem cells. Development 139, 4111–4121 (2012)

    Article  Google Scholar 

  • Schmid-Schonbein, G.W.: Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch. Histol. Cytol. 53(Suppl), 107–114 (1990)

    Article  Google Scholar 

  • Shieh, A.C., Rozansky, H.A., Hinz, B., Swartz, M.A.: Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71, 790–800 (2011)

    Article  Google Scholar 

  • Shields, J.D., Fleury, M.E., Yong, C., Tomei, A.A., Randolph, G.J., Swartz, M.A.: Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007)

    Article  Google Scholar 

  • Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. U. S. A. 108, 15342–15347 (2011)

    Article  ADS  Google Scholar 

  • Song, J.W., Bazou, D., Munn, L.L.: Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr. Biol. (Camb.) 4(8), 857–862 (2012)

    Article  Google Scholar 

  • Swartz, M.A., Lund, A.W.: Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer 12, 210–219 (2012)

    Article  Google Scholar 

  • Vedula, S.R., Leong, M.C., Lai, T.L., Hersen, P., Kabla, A.J., Lim, C.T., Ladoux, B.: Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl. Acad. Sci. U. S. A. 109, 12974–12979 (2012)

    Article  ADS  Google Scholar 

  • Versaevel, M., Grevesse, T., Gabriele, S.: Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3, 671 (2012)

    Article  ADS  Google Scholar 

  • Vickerman, V., Kamm, R.D.: Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Integr. Biol. (Camb.) 4, 863–874 (2012)

    Article  Google Scholar 

  • Wendel, M., Bazhenova, L., Boshuizen, R., Kolatkar, A., Honnatti, M., Cho, E.H., Marrinucci, D., Sandhu, A., Perricone, A., Thistlethwaite, P., Bethel, K., Nieva, J., Heuvel, M.V., Kuhn, P.: Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys. Biol. 9, 016005 (2012)

    Article  ADS  Google Scholar 

  • Wu, J.C., Tseng, P.Y., Tsai, W.S., Liao, M.Y., Lu, S.H., Frank, C.W., Chen, J.S., Wu, H.C., Chang, Y.C.: Antibody conjugated supported lipid bilayer for capturing and purification of viable tumor cells in blood for subsequent cell culture. Biomaterials 34, 5191–5199 (2013)

    Article  Google Scholar 

  • Yeon, J.H., Ryu, H.R., Chung, M., Hu, Q.P., Jeon, N.L.: In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12, 2815–2822 (2012)

    Article  Google Scholar 

  • Yuan, F., Leunig, M., Huang, S.K., Berk, D.A., Papahadjopoulos, D., Jain, R.K.: Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54, 3352–3356 (1994a)

    Google Scholar 

  • Yuan, F., Salehi, H.A., Boucher, Y., Vasthare, U.S., Tuma, R.F., Jain, R.K.: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54, 4564–4568 (1994b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance L. Munn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 US Government

About this chapter

Cite this chapter

Munn, L.L. (2016). Fluid Mechanics and Transport in Tumors. In: Janmey, P., et al. Physical Sciences and Engineering Advances in Life Sciences and Oncology. Science Policy Reports. Springer, Cham. https://doi.org/10.1007/978-3-319-17930-8_5

Download citation

Publish with us

Policies and ethics