Skip to main content

Knowledge Management: Intelligent In-pipe Inspection Robot Conceptual Design for Pipeline Infrastructure Management

  • Chapter
  • First Online:
Intelligent Techniques in Engineering Management

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 87))

Abstract

Pipeline distribution and production are primary methods of transporting oil, natural gas, chemicals, and water. However, prolonged exposure to natural weather may cause corrosion, crack, and leakage to the pipelines. Therefore, periodical inspection is considered uttermost important. As most mechanised inspection techniques (e.g., non-destructive testing) are only deal with external inspect, they cannot accurately detect significant corrosion or other of defects in the internal. In addition, the inspection tasks can only be applied manually by highly trained operators. Given these circumstances, various concepts of pipeline inspection robots are developed in recent years to enhance the whole maintenance excellence. In this chapter, a multi-agent system (MAS) approach assisted intelligent conceptual design (ICD) platform is adopted for miniature in-pipe inspection robot design synthesizing. The demo case study shows that the proposed MAS-ICD can outperform human designers in many perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ashaab, A., Molyneaux, M., Doultsinou, A., Brunner, B., Martínez, E., Moliner, F., et al.: Knowledge-based environment to support product design validation. Knowl. Based Syst. 26, 48–60 (2012)

    Article  Google Scholar 

  • Bonnema, G.M., van Houten, F.J.A.M.: Use of models in conceptual design. J. Eng. Des. 17, 549–562 (2006)

    Article  Google Scholar 

  • Cao, D.X., Zhu, N.H., Cui, C.X., Tan, R.H.: An agent-based framework for guiding conceptual design of mechanical products. Int. J. Prod. Res. 46, 2381–2396 (2008)

    Article  MATH  Google Scholar 

  • Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., et al.: The evolution, challenges, and future of knowledge representation in product design systems. Comput. Aided Des. 45, 204–228 (2013)

    Article  Google Scholar 

  • Chen, Y., Huang, J., Zhang, Z., Xie, Y.: A part affordance-based approach for capturing detailed design knowledge. Comput. Aided Des. 45, 1617–1629 (2013)

    Article  Google Scholar 

  • Choi, H.R., Roh, S.-G.: In-pipe robot with active steering capability for moving inside of pipelines. In: Habib, M.K. (ed.) Bioinspiration and Robotics Walking and Climbing Robots, Chapter 23, pp. 375–402. InTech, Rijeka, ISBN 978-3-902613-15-8 (2007)

    Google Scholar 

  • Cordes, S., Berns, K., Eberl, M., Ilg, W., Suna, R.: Autonomous sewer inspection with a wheeled, multiarticulated robot. Robot. Auton. Syst. 21, 123–135 (1997)

    Article  Google Scholar 

  • Dieter, G.E., Schmidt, L.C.: Engineering Design, vol. 5. McGraw-Hill, ISBN: 978-0-07-339814-3 (2013)

    Google Scholar 

  • Dorigo, M., Tuci, E., Trianni, V., Groß, R., Nouyan, S., Ampatzis, C. et al.: SWARM-BOT: design and implementation of colonies of self-assembling robots. In: Yen, G.Y., Fogel, D.B. (eds.) Computational Intelligence: Principles and Practice, pp. 103–135. IEEE Computational Intelligence Society, New York, (2006)

    Google Scholar 

  • Dorigo, M., Trianni, V., Åžahin, E., Groß, R., Labella, T.H., Deneubourg, J.-L., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robots 17, 223–245 (2004)

    Article  Google Scholar 

  • Fu, Q.Y., Chui, Y.P., Helander, M.G.: Knowledge identification and management in product design. J. Knowl. Manage. 10, 50–63 (2006)

    Article  Google Scholar 

  • Fuente, J.D.L., Gustafson, S., Twomey, C., Bix, L.: An affordance-based methodology for package design. Packag. Technol. Sci. 6, 1–15 (2014)

    Google Scholar 

  • Goldberg, K., Kehoe, B., Patil, S., Abbeel, P.: Cloud Robotics and Automation: A Survey of Related Work. EECS Department, University of California, Berkeley, UCB/EECS-2013–52013 (2013)

    Google Scholar 

  • Granosik, G., Hansen, M.G., Borenstein, J.: The omnitread serpentine robot for industrial inspection and surveillance. Int. J. Ind. Rob. IR32-2, 139–148 (2005)

    Google Scholar 

  • Guizzo, E.: Robots with their heads in the clouds. Spectrum 48, 16–18 (2011)

    Article  Google Scholar 

  • Guo, B., Song, S., Ghalambor, A., Lin, T.R.: Offshore Pipelines: Design, Installation, and Maintenance, 2nd ed. Gulf Professional Publishing, Elsevier Inc., Waltham, ISBN: 978–0-12-397949-0 (2014)

    Google Scholar 

  • Haik, Y., Shahin, T.: Engineering Design Process, 2nd edn. Cengage Learning, Stamford, ISBN 978-0-495-66814-5 (2011)

    Google Scholar 

  • Heo, G., Park, J.: A framework for evaluating the effects of maintenance-related human errors in nuclear power plants. Reliab. Eng. Syst. Saf. 95, 797–805 (2010)

    Article  Google Scholar 

  • Horodinca, M., Doroftei, I., Mignon, E., Preumont, A.: A simple architecture for in-pipe inspection robots. In: Proceedings of International Colloquium on Mobile and Autonomous Systems, pp. 61–64. Magdeburg, Germany (2002)

    Google Scholar 

  • Huang, H.-Z., Liu, Y., Li, Y., Xue, L., Wang, Z.: New evaluation methods for conceptual design selection using computational intelligence techniques. J. Mech. Sci. Technol. 27, 733–746 (2013)

    Article  Google Scholar 

  • Jin, T., Que, P., Tao, Z.: Development of magnetic flux leakage pipe inspection robot using hall sensors. In: Proceedings of the International Symposium on Micro-Nanomechatronics and Human Science, pp. 325–329, Oct. 3–Nov. 2004

    Google Scholar 

  • Jun, C., Deng, Z., Jiang, S.: Study of locomotion control characteristics for six wheels driven in-pipe robot. Paper presented at the IEEE International Conference on Robotics and Biomimetics, pp. 119–124. Shenyang, China, 22–26 Aug. 2004

    Google Scholar 

  • Kamei, K., Nishio, S., Hagita, N., Sato, M.: Cloud networked robotics. IEEE Netw. Mag. 26 28–34 (2012)

    Google Scholar 

  • Kang, Y., Tang, D.: Matrix-based computational conceptual design with ant colony optimisation. J. Eng. Des. 24, 429–452 (2013)

    Article  Google Scholar 

  • Kang, Y.K., Park, J.W. , Yang, H.S.: Analytical approach of the in-pipe robot on branched pipe navigation and its solution. World Acad. Sci. Eng. Technol. 77, 449–453 (2013)

    Google Scholar 

  • Kwon, Y.-S., Jung, E.-J., Lim, H., Yi, B.-J.: Design of a reconfigurable indoor pipeline inspection robot. Presented at the International Conference on Control, Automation and Systems, pp. 712–716. COEX, Seoul, 17–20 October 2007

    Google Scholar 

  • Lee, J.-S., Roh, S.-G., Kim D.W., Moon, H., Choi, H.R.: In-pipe robot navigation based on the landmark recognition system using shadow images. In: Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009

    Google Scholar 

  • Lee, D., Park, J., Hyun, D., Yook, G., Yang, H.-S.: Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types. Mech. Mach. Theor. 56, 52–68 (2012)

    Article  Google Scholar 

  • Lim, J., Park, H., An, J., Hong, Y.-S., Kim, B., Yi, B.-J.: One pneumatic line based inchworm-like micro robot for half-inch pipe inspection. Mechatronics 18, 315–322 (2008)

    Article  Google Scholar 

  • Liu, Q., Ren, T., Chen, Y.: Characteristic analysis of a novel in-pipe driving robot. Mechatronics 23, 419–428 (2013)

    Article  Google Scholar 

  • Miyagawa, T., Iwatsuki, N.: Characteristics of in-pipe mobile robot with wheel drive mechanism using planetary gears. In: Proceedings of International Conference on Mechatronics and Automation, pp. 3646–3651 (2007)

    Google Scholar 

  • Moghaddam, M.M., Arbabtafti, M., Hadi, A.: In-pipe inspection crawler adaptable to the pipe interior diameter. Int. J. Robot. Autom. 26, 135–145 (2011)

    Google Scholar 

  • Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., Floreano, D.: Superlinear physical performances in a SWARM-BOT. In: Capcarrere, M. (ed.) ECAL 2005, LNAI 3630, pp. 282–291. Springer, Heidelberg (2005)

    Google Scholar 

  • Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.-L., Dorigo, M.: The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robot. Autom. Mag. 12(3), 21–28 (2005)

    Google Scholar 

  • Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.-L., et al.: Swarm-bot: a new distributed robotic concept. Auton. Robots 17, 193–221 (2004)

    Article  Google Scholar 

  • Ong, J.K., Bouazza-Marouf, K., Kerr, D.: Fuzzy logic control for use in in-pipe mobile robotic system navigation. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 217, 401–419 (2003)

    Google Scholar 

  • Oya, T., Okada, T.: Development of a steerable, wheel-type, in-pipe robot and its path planning. Adv. Robot. 19, 635–650 (2005)

    Article  Google Scholar 

  • Pagallo, U.: Robots in the cloud with privacy: a new threat to data protection? Comput. Law Secur. Rev. 29, 501–508 (2013)

    Article  Google Scholar 

  • Paramasivam, V., Senthil, V.: Analysis and evaluation of product design through design aspects using digraph and matrix approach. Int. J. Interact. Des. Manuf. 3, 13–23 (2009)

    Article  Google Scholar 

  • Prasad, E.N., Kannan, M., Azarudeen, A., Karuppasamy, N.: Defect identification in pipe lines using pipe inspection robot. Int. J. Mech. Eng. Robot. Res. 1, 20–31 (2012)

    Google Scholar 

  • Qi, H., Zhang, X., Chen, H., Ye, J.: Tracing and localization system for pipeline robot. Mechatronics 19, 76–84 (2009)

    Article  Google Scholar 

  • Qi, H., Ye, J., Zhang, X., Chen, H.: Wireless tracking and locating system for in-pipe robot. Sens. Actuators A 159, 117–125 (2010)

    Article  Google Scholar 

  • Roh, S.-G., Choi, H.R.: Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans. Rob. 21, 1–17 (2005)

    Article  Google Scholar 

  • Rome, E., Hertzberg, J., Kirchner, F., Licht, U., Christaller, T.: Towards autonomous sewer robots: the MAKRO project. Urban Water 1, 57–70 (1999)

    Article  Google Scholar 

  • Roslin, N.S., Anuar, A., Jalal, M.F.A., Sahari, K.S.M.: A review: hybrid locomotion of in-pipe inspection robot. Procedia Eng. 41, 1456–1462 (2012)

    Article  Google Scholar 

  • Russell, S.J., Norvig, P., Artificial Intelligence: A Modern Approach, 3rd ed. Pearson Education, Inc, Upper Saddle River, ISBN 978-0-13-604259-4 (2010)

    Google Scholar 

  • Sabzehmeidani, Y., Mailah, M., Hussein, M., Tavakolpour, A.R.: Intelligent control and modelling of a micro robot for in-pipe application. World Acad. Sci. Eng. Technol. 48, 449–454 (2010)

    Google Scholar 

  • Schmidt, D., Berns, K.: Climbing robots for maintenance and inspections of vertical structures—a survey of design aspects and technologies. Robot. Auton. Syst. 61, 1288–1305 (2013)

    Article  Google Scholar 

  • Sheng, W., Chen, H., Xi, N.: Navigating a miniature crawler robot for engineered structure inspection. IEEE Trans. Autom. Sci. Eng. 5, 368–373 (2008)

    Article  Google Scholar 

  • Tan, Y., Zheng, Z.: Research advance in swarm robotics. Defence Technology. http://dx.doi.org/10.1016/j.dt.2013.03.001 (in press)

  • Tian, S., Saitov, D., Lee, S.G.: Cloud robot with real-time face recognition ability. Adv. Sci. Technol. Lett. 51, 77–80 (2014)

    Google Scholar 

  • Trianni, V., Nolfi, S., Dorigo, M.: Cooperative hole avoidance in a swarm-bot. Robot. Auton. Syst. 54, 97–103 (2006)

    Article  Google Scholar 

  • Tur, J.M.M., Garthwaite, W.: Robotic devices for water main in-pipe inspection: a survey. J. Field Robot. 27, 491–508 (2010)

    Article  Google Scholar 

  • Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López, D., et al: Roboearth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011)

    Google Scholar 

  • Wilson, J.O.: A systematic approach to bio-inspired conceptual design. Doctor of Philosophy, Department of Mechanical Engineering, Georgia Institute of Technology (2008)

    Google Scholar 

  • Xing, B., Gao, W.-J., Marwala, T.: Chapter 11: Multi-agent framework for distributed leasing-based injection mould remanufacturing. In: Memon, Q.A. (ed.) Distributed Networks: Inteligence, Security, and Applications. CRC Press, Boca Raton, ISBN 978-1-4665-5958-5 (2014)

    Google Scholar 

  • Xing, B., Gao, W.-J: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Springer, Heidelberg, ISBN 978-3-319-03403-4 (2014)

    Google Scholar 

  • Xu, F., Wang, X., Wang, L.: Cable inspection robot for cable-stayed bridges: design, analysis, and application. J. Field Robot. 28, 441–459 (2011)

    Article  Google Scholar 

  • Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, UK, ISBN 978-1-905986-28-6 (2008)

    Google Scholar 

  • Zhang, Y., Yan, G.: In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting. Mech. Mach. Theor 42, 1618–1631 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xing, B. (2015). Knowledge Management: Intelligent In-pipe Inspection Robot Conceptual Design for Pipeline Infrastructure Management. In: Kahraman, C., Çevik Onar, S. (eds) Intelligent Techniques in Engineering Management. Intelligent Systems Reference Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-17906-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17906-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17905-6

  • Online ISBN: 978-3-319-17906-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics