Skip to main content

The Metabolic Basis of Kidney Cancer

  • Chapter

Abstract

Renal cell carcinoma (RCC) represents approximately 95 % of neoplasms arising from the kidney and is composed of a diverse group of malignancies with distinct genetic and molecular alterations, disparate histologic features, and unique clinical characteristics. Targeted therapies for metastatic disease have centered on alterations in the von Hippel–Lindau –hypoxia-inducible factor – vascular endothelial growth factor pathway. However, the discovery of additional genetic alterations in non-clear cell subtypes and their impact on cellular metabolic pathways have led to the exploration of alternate avenues of study. The proclivity of tumor cells for excessive glucose utilization and increased lactate production was described in the 1920s. The preferential utilization of aerobic glycolysis as a means of ATP synthesis by tumors – the Warburg effect – was initially thought to be a result of intrinsic mitochondrial dysfunction and is the hallmark of many forms of RCC. Hereditary kidney cancer syndromes, specifically Hereditary Leiomyomatosis and Renal Cell Carcinoma and Succinate Dehydrogenase Renal Cell Carcinoma, are robust examples of human cancers where impaired mitochondrial oxidative phosphorylation leading to aberrant tumor metabolism plays a prominent role. Acknowledging the role of altered metabolic processes has led to better understanding of their contribution in tumor proliferation and survival. Strategies for exploiting these metabolic alterations are being actively pursued and are beginning to yield dividends in the diagnosis, surveillance, and treatment of patients with kidney cancer.

Disclosure of Funding 

This research was funded in part by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, and Center for Cancer Research, Bethesda, MD, USA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics. CA Cancer J Clin 64(1):9–29

    Article  PubMed  Google Scholar 

  2. Linehan WM, Ricketts CJ (2013) The metabolic basis of kidney cancer. Semin Cancer Biol 23(1):46–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Thompson CB (2009) Attacking cancer at its root. Cell 138(6):1051–1054

    Article  CAS  PubMed  Google Scholar 

  5. Christofk HR, Vander Heiden MG, Wu N et al (2008) Pyruvate kinase M2 is a phosphotyrosine binding protein. Nature 452(7184):181–186

    Article  CAS  PubMed  Google Scholar 

  6. Deberardinis RJ, Lum JJ, Hatzivassiliou G et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  7. Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7185):230–233

    Article  CAS  PubMed  Google Scholar 

  8. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    CAS  PubMed  Google Scholar 

  9. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yang Y, Valera VA, Padilla-Nash HM et al (2010) UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet Cytogenet 196:45–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85

    Article  CAS  PubMed  Google Scholar 

  12. DeBerardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104:19345–19350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  CAS  PubMed  Google Scholar 

  14. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Memmott RM, Dennis PA (2009) Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal 21:656–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yeung SJ, Pan J, Lee MH (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis – the seventh hallmark of cancer. Cell Mol Life Sci 65(24):3981–3999

    Article  CAS  PubMed  Google Scholar 

  17. Osthus RC, Shim H, Kim S et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275(29):21797–21800

    Article  CAS  PubMed  Google Scholar 

  18. Ooi A, Wong JC, Petillo D et al (2011) An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20(4):511–523

    Article  CAS  PubMed  Google Scholar 

  19. Mitsuishi Y, Taguchi K, Kawatani Y et al (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22(1):66–79

    Article  CAS  PubMed  Google Scholar 

  20. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  CAS  PubMed  Google Scholar 

  21. Ohh M, Park CW, Ivan M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2:423–427

    Article  CAS  PubMed  Google Scholar 

  22. Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  CAS  PubMed  Google Scholar 

  23. Isaacs JS, Jung YJ, Mole DR et al (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8(2):143–153

    Article  CAS  PubMed  Google Scholar 

  24. Hasumi Y, Baba M, Ajima R et al (2009) Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci 106(44):18722–18727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Baba M, Hong SB, Sharma N et al (2006) Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1 and AMPK and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci 103(42):15552–15557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Turner A, McGivan JD (2003) Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas. Biochem J 370:403–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Matsuno T, Goto I (1992) Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma. Cancer Res 52:1192–1194

    CAS  PubMed  Google Scholar 

  28. Mullen AR, Wheaton WW, Jin ES et al (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388

    PubMed Central  PubMed  Google Scholar 

  29. Toro JR, Nickerson ML, Wei MH et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73:95–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Grubb RL III, Franks ME, Toro J et al (2007) Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol 177:2074–2080

    Article  CAS  PubMed  Google Scholar 

  31. Merino MJ, Torres-Cabala C, Pinto PA, Linehan WM (2007) The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol 31:1578–1585

    Article  PubMed  Google Scholar 

  32. Tong WH, Sourbier C, Kovtunovych G et al (2011) The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases metabolic propensities and lowers cellular iron levels. Cancer Cell 20:315–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Adam J, Hatipoglu E, O’Flaherty L et al (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20(4):524–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ooi A, Dykema K, Ansari A et al (2013) CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res 73(7):2044–2051

    Article  CAS  PubMed  Google Scholar 

  35. Baysal BE, Ferrell RE, Willett-Brozick JE et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    Article  CAS  PubMed  Google Scholar 

  36. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270

    Article  CAS  PubMed  Google Scholar 

  37. Vanharanta S, Buchta M, McWhinney SR et al (2004) Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 74:153–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ricketts C, Woodward ER, Killick P et al (2008) Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 100:1260–1262

    Article  CAS  PubMed  Google Scholar 

  39. Ricketts CJ, Shuch B, Vocke CD et al (2012) Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 188(6):2063–2071

    Article  CAS  PubMed  Google Scholar 

  40. Walther MM, Choyke PL, Glenn G et al (1999) Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol 161:1475–1479

    Article  CAS  PubMed  Google Scholar 

  41. Duffey BG, Choyke PL, Glenn G et al (2004) The relationship between renal tumor size and metastases in patients with von Hippel-Lindau disease. J Urol 172:63–65

    Article  PubMed  Google Scholar 

  42. Latif F, Tory K, Gnarra JR et al (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  CAS  PubMed  Google Scholar 

  43. Hosoe S, Brauch H, Latif F et al (1990) Localization of the von Hippel–Lindau disease gene to a small region of chromosome 3. Genomics 8:634–640

    Article  CAS  PubMed  Google Scholar 

  44. Moore LE, Nickerson ML, Brennan P et al (2011) Von Hippel–Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 7:1–13

    Article  Google Scholar 

  45. Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49

    Article  Google Scholar 

  46. Fischer J, Palmedo G, von Knobloch R et al (1998) Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours. Oncogene 17:733–739

    Article  CAS  PubMed  Google Scholar 

  47. Bottaro DP, Rubin JS, Faletto DL et al (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251(4995):802–804

    Article  CAS  PubMed  Google Scholar 

  48. Choueiri TK, Vaishampayan U, Rosenberg JE et al (2013) Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 31(2):181–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Nickerson ML, Warren MB, Toro JR et al (2002) Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2:157–164

    Article  CAS  PubMed  Google Scholar 

  50. Vocke CD, Yang Y, Pavlovich CP et al (2005) High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dube-associated renal tumors. J Natl Cancer Inst 97:931–935

    Article  CAS  PubMed  Google Scholar 

  51. Tsun ZY, Bar-Peled L, Chantranupong L et al (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52(4):495–505

    Article  CAS  PubMed  Google Scholar 

  52. Hasumi H, Baba M, Hong SB et al (2008) Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene 415:60–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hasumi H, Baba M, Hasumi Y et al (2012) Regulation of mitochondrial oxidative phosphorylation by tumor suppressor FLCN. J Natl Cancer Inst 104(22):1750–1764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Davis CF, Ricketts CJ, Wang M et al (2014) The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26(3):319–330

    Article  CAS  PubMed  Google Scholar 

  55. Bjornsson J, Short MP, Kwiatkowski DJ et al (1996) Tuberous sclerosis-associated renal cell carcinoma: clinical, pathological and genetic factors. Am J Pathol 149:1–8

    Google Scholar 

  56. Brugarolas J, Kaelin WG Jr (2004) Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6:7–10

    Article  CAS  PubMed  Google Scholar 

  57. Brugarolas JB, Vazquez F, Reddy A et al (2003) TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4:147–158

    Article  CAS  PubMed  Google Scholar 

  58. Komai Y, Fujiwara M, Fujii Y et al (2009) Adult Xp11 translocation renal cell carcinoma diagnosed by cytogenetics and immunohistochemistry. Clin Cancer Res 15:1170–1176

    Article  CAS  PubMed  Google Scholar 

  59. Malouf GG, Camparo P, Molinie V et al (2011) Transcription factor E3 and transcription factor EB renal cell carcinomas: clinical features, biological behavior and prognostic factors. J Urol 185(1):24–29

    Article  CAS  PubMed  Google Scholar 

  60. Wang W, Ding J, Li Y et al (2014) Magnetic resonance imaging and computed tomography characteristics of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion. PLoS One 9(6):e99990

    Article  PubMed Central  PubMed  Google Scholar 

  61. Mosquera JM, Dal Cin P, Mertz KD et al (2011) Validation of a TFE3 break-apart FISH assay for Xp11.2 translocation renal cell carcinomas. Diagn Mol Pathol 20:129–137

    Article  CAS  PubMed  Google Scholar 

  62. Zhong M, De Angelo P, Osborne L et al (2012) Translocation renal cell carcinomas in adults: a single-institution experience. Am J Surg Pathol 36:654–662

    Article  PubMed Central  PubMed  Google Scholar 

  63. Ellis CL, Eble JN, Subhawong AP et al (2014) Clinical heterogeneity of Xp11 translocation renal cell carcinoma: impact of fusion subtype, age, and stage. Mod Pathol 27(6):875–876

    Article  CAS  PubMed  Google Scholar 

  64. Bertolotto C, Lesueur F, Giuliano S et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98

    Article  CAS  PubMed  Google Scholar 

  65. Argani P, Hicks J, De Marzo AM et al (2010) Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. Am J Surg Pathol 34(9):1295–1303

    Article  PubMed Central  PubMed  Google Scholar 

  66. Iwasaki H, Naka A, Iida KT et al (2012) TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am J Physiol Endocrinol Metab 302(7):E896–E902

    Article  CAS  PubMed  Google Scholar 

  67. Pilarski R, Burt R, Kohlman W, Pho L et al (2013) Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst 105(21):1607–1616

    Article  CAS  PubMed  Google Scholar 

  68. Mester JL, Zhou M, Prescott N et al (2012) Papillary renal cell carcinoma is associated with PTEN hamartoma syndrome. Urology 79(5):1187.e1–1187.e7

    Article  Google Scholar 

  69. Shuch B, Ricketts CJ, Vocke CD et al (2013) Germline PTEN mutation Cowden syndrome: an underappreciated form of hereditary kidney cancer. J Urol 190(6):1990–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Squarize CH, Castilho RM, Gutkind JS (2008) Chemoprevention and treatment of experimental Cowden’s disease by mTOR inhibition with rapamycin. Cancer Res 68(17):7066–7072

    Article  CAS  PubMed  Google Scholar 

  71. Shuch B, Linehan WM, Srinivasan R (2013) Aerobic glycolysis: a novel target in kidney cancer. Expert Rev Anticancer Ther 13(6):711–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Srinivasan R, Su D, Stamatakis L et al (2014) Mechanism based targeted therapy for hereditary leiomyomatosis and renal cell cancer (HLRCC) and sporadic papillary renal cell carcinoma: interim results from a phase 2 study of bevacizumab and erlotinib. Eur J Cancer 50(S6):8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramaprasad Srinivasan MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Srinivasan, R., George, A.K., Linehan, W.M. (2015). The Metabolic Basis of Kidney Cancer. In: Lara, P., Jonasch, E. (eds) Kidney Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-17903-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17903-2_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17902-5

  • Online ISBN: 978-3-319-17903-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics