Skip to main content

Papilledema and Microgravity-Induced Fluid Shift

  • Chapter
  • First Online:
Book cover Microgravity and Vision Impairments in Astronauts

Part of the book series: SpringerBriefs in Space Development ((BRIEFSSPACE))

  • 614 Accesses

Abstract

One of the features of visually impairment/intracranial pressure is swelling of the optic nerve—papilledema. Another feature is hydrostatic pressure. This is because hydrostatic pressure changes when astronauts arrive in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcelis J, Silberstein SD. Idiopathic intracranial hypertension without papilledema. Arch Neurol. 1991 Apr; 48(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  2. Brazis PW, Lee AG. Elevated intracranial pressure and pseudotumor cerebri. Curr Opin Ophthalmol. 1998 Dec; 9(6):27–32. Review.

    Article  CAS  PubMed  Google Scholar 

  3. Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5189–95.

    Article  PubMed  Google Scholar 

  4. Minckler DS, Tso MOM, Zimmermann LE. A light microscopic, autoradiographic study of axonal transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol. 1976; 82: 741–757.

    Article  CAS  PubMed  Google Scholar 

  5. Levy NS. The effects of elevated intraocular pressure on slow axonal protein flow. Invest Ophthalmol. 1974; 13: 691 –695.

    Google Scholar 

  6. Quigley HA, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol Vis Sci. 1976; 15: 606–616.

    Google Scholar 

  7. Jonas JB. Central retinal artery and vein pressure in patients with chronic open-angle glaucoma. Br J Ophthalmol. 2003; 87: 949–951.

    Google Scholar 

  8. Jonas JB, Harder B. Ophthalmodynamometric estimation of cerebrospinal fluid pressure in pseudotumor cerebri. Br J Ophthalmol. 2003; 87: 361 –362.

    Google Scholar 

  9. Gass A, Barker GJ, Riordan-Eva P, et al. MRI of the optic nerve in benign intracranial hypertension. Neuroradiology 1996;38:769–73

    Article  CAS  PubMed  Google Scholar 

  10. Degnan AJ, Levy LM. Pseudotumor cerebri: brief review of clinical syndrome and imaging findings. AJNR Am J Neuroradiol 2011;32:1986–93. Epub 2011 Jun

    Article  CAS  PubMed  Google Scholar 

  11. Seitz J, Held P, Strotzer M, et al. Magnetic resonance imaging in patients diagnosed with papilledema: a comparison of 6 different high-resolution T1- and T2(*)-weighted 3-dimensional and 2-dimensional sequences. J Neuroimaging. 2002;12:164–71

    Article  PubMed  Google Scholar 

  12. Eliseeva NM, Serova NK, Arutiunov NV. Magnetic resonance imaging of the orbital portion of the optic nerve at different stages of papilledema. Vestn Oftalmol 2005;121:5–9

    CAS  PubMed  Google Scholar 

  13. Gibby WA, Cohen MS, Goldberg HI, et al. Pseudotumor cerebri: CT findings and correlation with vision loss. AJR Am J Roentgenol 1993;160:143–46

    Article  CAS  PubMed  Google Scholar 

  14. Atta HR, Byrne SF. The findings of standardized echography for choroidal folds. Arch Ophthalmol 1988;106:1234–41

    Article  CAS  PubMed  Google Scholar 

  15. Jacobson DM. Intracranial hypertension and the syndrome of acquired hyperopia with choroidal folds. J Neuroophthalmol 1995;15:178–85

    CAS  PubMed  Google Scholar 

  16. Brodsky MC, Vaphiades M. Magnetic resonance imaging in pseudotumor cerebri. Ophthalmology 1998;105:1686–93

    Article  CAS  PubMed  Google Scholar 

  17. Cheng H, Nair G, Walker TA, et al. Structural and functional MRI reveals multiple retinal layers. Proc Natl Acad Sci USA 2006;103:17525–30. Epub 2006. Nov 6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Georgouli T, James T, Tanner S, et al. High-resolution microscopy coil MREye. Eye (Lond) 2008;22:994–96. Epub 2007 Mar 2.

    Article  CAS  PubMed  Google Scholar 

  19. Strenk SA, Semmlow JL, Strenk LM, et al. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Opthalmol Vis Sci. 1999;40:1162–69

    CAS  Google Scholar 

  20. Lemke AJ, Hosten N, Wiegel T, et al. Intraocular metastases: differential diagnosis from uveal melanomas with high-resolution MRI using a surface coil. Eur Radiol 2001;11:2593–601

    Article  CAS  PubMed  Google Scholar 

  21. Shen Q, Cheng H, Pardue MT, et al. Magnetic resonance imaging of tissue and vascular layers in the cat retina. J Magn Reson Imaging 2006;23:465–72.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Duong TQ, Shen Q, Cheng H, et al. Magnetic resonance imaging of anatomical layers in the cat retina. Proc Int Soc Magn Reson Med 2005;1033.

    Google Scholar 

  23. Duong TQ, Ngan SC, Ugurbil K, et al. Functional magnetic resonance imaging of the retina. Invest Ophthalmol Vis Sci 2002;43:1176–81.

    PubMed Central  PubMed  Google Scholar 

  24. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion Tensor Imaging of the Brain. Neurotherapeutics. Jul 2007; 4(3): 316–329.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hamilton DR. “Cardiovascular Disorders.” In Principles of Clinical Medicine for Space Flight, by Michael R. Barratt and Sam L. Pool, 317–359. New York, NY: Springer, 2008.

    Google Scholar 

  26. Lathers CM, Charles JB, Elton KF, Holt TA, Mukai C, Bennett BS, Bungo MW. Acute hemodynamic responses to weightlessness in humans. J. Clin. Pharmacol. 1989, 29, 615–627.

    Article  CAS  PubMed  Google Scholar 

  27. Mukai CN, Lathers CM, Charles JB, Bennett BS, Igarashi M, Patel S. Acute hemodynamic responses to weightlessness during parabolic flight. J. Clin. Pharmacol. 1991, 31, 993–1000.

    Article  CAS  PubMed  Google Scholar 

  28. Thornton WE. Anthropometric changes in weightlessness. In Anthropometric Source Book; Technical Report RP 1024, N79-11735; NASA: Washington, DC, USA, 1978; pp. I-1–I-102.

    Google Scholar 

  29. Alexander DJ, Gibson CR, Hamilton DR, Lee SMC, Mader TH, Otto C, Oubre CM, Pass AF, Platts S, Scott JM et al. Evidence Report: Risk of Spaceflight-Induced Intracranial Hypertension and Vision Alterations; NASA: Washington, DC, USA, 2012. Available online: http://humanresearchroadmap.nasa.gov/evidence/reports/VIIP.pdf (accessed on 4 November 2014).

  30. Caiani EG, Sugeng L, Weinert L, Capderou A, Lang RM, Vaida P. Objective evaluation of changes in left ventricular and atrial volumes during parabolic flight using real-time three-dimensional echocardiography. J. Appl. Physiol. 2006, 101, 460–468.

    Article  CAS  PubMed  Google Scholar 

  31. Caiani EG, Weinert L, Lang RM, Vaida P. The role of echocardiography in the assessment of cardiac function in weightlessness—Our experience during parabolic flights. Respir. Physiol. Neurobiol. 2009, 169, S6–S9.

    Article  PubMed  Google Scholar 

  32. Sayson JV, Hargens AR. Pathophysiology of low back pain during exposure to microgravity. Aviat. Space Environ. Med. 2008, 79, 365–373.

    Article  PubMed  Google Scholar 

  33. Convertino VA. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity. Med. Sci. Sports Exerc. 1996, 28, S45–S52.

    Article  CAS  PubMed  Google Scholar 

  34. Leach CS, Rambaut PC. Endocrine responses in long-duration manned space flight. Acta Astronaut. 1975, 2, 115–127.

    Article  CAS  PubMed  Google Scholar 

  35. Buckey JC. Space Physiology. New York: Oxford University Press, 2006.

    Google Scholar 

  36. Prata TS, de Moraes CG, Kanadani FN, Ritch R, Paranhos A Jr. Posture-induced intraocular pressure changes: Considerations regarding body position in glaucoma patients. Surv. Ophthalmol. 2010, 55, 445–453.

    Article  PubMed  Google Scholar 

  37. Friberg TR, Weinreb RN. Ocular manifestations of gravity inversion. JAMA 1985, 253, 1755–1757.

    Google Scholar 

  38. Weinreb RN, Cook J, Friberg TR. Effect of inverted body position on intraocular pressure. Am. J. Ophthalmol. 1984, 98, 784–787.

    Article  CAS  PubMed  Google Scholar 

  39. Aoi M, Gremaud P, Tran HT, Novak V, Olufsen MS. Modeling cerebral blood flow and regulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 2009, 5470–5473.

    Google Scholar 

  40. Mader TH, Gibson CR, Caputo M, Hunter N, Taylor G, Charles J, Meehan RT. Intraocular pressure and retinal vascular changes during transient exposure to microgravity. Am. J. Ophthalmol. 1993, 115, 347–350.

    Article  CAS  PubMed  Google Scholar 

  41. Mader TH, Taylor GR, Hunter N, Caputo M, Meehan RT. Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degree head-down tilt. Aviat. Space Environ. Med. 1990, 61, 810–813.

    CAS  PubMed  Google Scholar 

  42. Ansari R, Manuel FK, Geiser M, Moret F, Messer RK, King JF, Suh KI. Measurement of Choroidal Blood Flow in Zero Gravity. In Proceedings of the Opthalmic Technologies XII, San Jose, CA, USA, 25 January 2002.

    Google Scholar 

  43. Shinojima A, Iwasaki K, Aoki K, Ogawa Y, Yanagida R, Yuzawa M. Subfoveal choroidal thickness and foveal retinal thickness during head-down tilt. Aviat. Space Environ. Med. 2012, 83, 388–393.

    Article  PubMed  Google Scholar 

  44. Kuzmin M. Reactions of eye retinal vessels and intraocular pressure during man’s 120 day restriction to a horizontal position. Kosmicheskaya Biologiya I Meditsina, 1973; 7(2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Seedhouse .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seedhouse, E. (2015). Papilledema and Microgravity-Induced Fluid Shift. In: Microgravity and Vision Impairments in Astronauts. SpringerBriefs in Space Development. Springer, Cham. https://doi.org/10.1007/978-3-319-17870-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17870-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17869-1

  • Online ISBN: 978-3-319-17870-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics