Skip to main content

Fundus Imaging in Wide-Field: A Brief Historical Journey

  • Chapter
  • First Online:

Abstract

Our ability to visualize has often limited our ability to conceptualize, in medicine as well as technology, science, and mathematics. Before we were able to see the retina, our perspective of ocular disease was largely confined to disorders of the anterior segment, such as strabismus, corneal disease, conjunctivitis, and cataracts. Our understanding of blindness and amaurosis was hidden behind the seemingly impenetrable pupillary curtain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heitz RF. The earliest visualizations of the living eye’s fundus by immersion in water. Archiwum Historii I Filozofii Medycyny. 2012;75:11–5.

    Google Scholar 

  2. Albert DM, Miller WH. Jan Purkinje and the ophthalmoscope. Am J Ophhalmol. 1973;76:494–9.

    Article  CAS  Google Scholar 

  3. Thau W. Purkyně: a pioneer in ophthalmoscopy. Arch Ophthalmol. 1942;27:299–316.

    Article  Google Scholar 

  4. Mark HH. The first ophthalmoscope. Arch Ophthalmol. 1970;84:520–1.

    Article  CAS  PubMed  Google Scholar 

  5. Cumming W. On a luminous appearance of the human eye, and its application to the detection of disease of the retina and posterior part of the eye. Med Chir Trans. 1846;29:283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyons HG. Charles Babbage and the ophthalmoscope. Rec R Soc London. 1940;3:146–8. doi:10.1098/rsnr.1940.0019.

  7. Mark HH. On the evolution of binocular ophthalmoscopy. Arch Ophthalmol. 2007;125:830–3.

    Article  PubMed  Google Scholar 

  8. Miller D. Ophthalmic technology for the clinician: direct ophthalmoscopy revisited. Ann Ophthalmol. 1982;14:1107–10.

    CAS  PubMed  Google Scholar 

  9. Jacklin HN. 125 years of indirect ophthalmoscopy. Ann Ophthalmol. 1979;11:643–6, 649–50.

    CAS  PubMed  Google Scholar 

  10. Snead MP, Rubinstein MP, Jacobs PM. The optics of fundus examination. Surv Ophthalmol. 1992;36:439–45.

    Article  CAS  PubMed  Google Scholar 

  11. Colenbrander A. Principles of ophthalmoscopy. Duane’s Ophthalmology, Lippencott Williams Wilkens, Philadelphia 2006; 1.

    Google Scholar 

  12. Van Cader TC. History of ophthalmic photography. J Ophthalmic Photogr. 1978;1:7–9.

    Google Scholar 

  13. Saine PJ. Landmarks in the historical development of fluorescein angiography. J Ophthalmic Photogr. 1993;15:17–23.

    CAS  PubMed  Google Scholar 

  14. Gerloff O. Ueber die fotografie des augenhintergrundes. Klin Monat Augenheil. 1891;29:397.

    Google Scholar 

  15. Thorner W. A new stationary ophthalmoscope without reflexes. Am J Ophtholmol. 1899;16:376–91.

    Google Scholar 

  16. Dimmer F. Ueber Die Photographic Des Augenhintergrundes. Wiesbaden: Bergmann; 1907. p. 1.

    Google Scholar 

  17. Rosen E. Fundus cameras. Trans Ophthalmol Soc U K. 1981;101:146–8.

    CAS  PubMed  Google Scholar 

  18. Hansell P, Beeson EJG. Retinal photography in colour. Br J Ophtholmol. 1953;37:65–9.

    Article  CAS  Google Scholar 

  19. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.

    Article  CAS  PubMed  Google Scholar 

  20. Pomerantzeff O. Wide-angle noncontact and small-angle contact cameras. Invest Ophthalmol Vis Sci. 1980;19:973–9.

    CAS  PubMed  Google Scholar 

  21. Witmer MT, Kiss S. Wide-field imaging of the retina. Surv Ophthalmol. 2013;58:143–54.

    Article  PubMed  Google Scholar 

  22. Shields C, Materna M, Shields J. Panoramic imaging of the ocular fundus. Arch Ophtholmol. 2003;121:1603–7.

    Article  Google Scholar 

  23. Patel M, Kiss S. Ultra-wide-field fluorescein angiography in retinal disease. Curr Opin Ophthalmol. 2014;25:213–20.

    Article  PubMed  Google Scholar 

  24. Staurenghi G, Viola F, Mainster MA, Graham RD, Harrington PG. Scanning laserophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol. 2005;123:244–52.

    Article  PubMed  Google Scholar 

  25. Min Sagong, Jano van Hemert, Lisa C. Olmos de Koo, Cullen Barnett, SriniVas R. Sadda. Assessment of Accuracy and Precision of Quantification of Ultra-Widefield Images. Ophthalmology 2015 Apr;122(4):864–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Rosen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leung, E.H., Rosen, R. (2016). Fundus Imaging in Wide-Field: A Brief Historical Journey. In: Kozak, I., Arevalo, J. (eds) Atlas of Wide-Field Retinal Angiography and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-17864-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17864-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17863-9

  • Online ISBN: 978-3-319-17864-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics