Skip to main content

Post-Stroke Cognitive Impairment

  • Chapter

Abstract

Cognitive impairment is common after stroke and its recognition is crucial, as it impacts on rehabilitation. Deficits may affect specific cognitive domains such as language or may be more global. In this chapter, we review the literature studying the neuroanatomy and the clinical presentation of major types of cognitive deficit, and discuss which neuropsychological tests are appropriate for each cognitive domain. Pharmacological treatment options are limited, but several studies are analysing the effects of secondary stroke prevention and specific biological products and their role in preventing, altering, or reducing cognitive decline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Douiri A, Rudd AG, Wolfe CD. Prevalence of poststroke cognitive impairment: South London Stroke Register 1995–2010. Stroke. 2013;44:138–45.

    PubMed  Google Scholar 

  2. Tham W, Auchus AP, Thong M, Goh ML, Chang HM, Wong MC, et al. Progression of cognitive impairment after stroke: one year results from a longitudinal study of Singaporean stroke patients. J Neurol Sci. 2002;203–204:49–52.

    PubMed  Google Scholar 

  3. Jacova C, Pearce LA, Costello R, McClure LA, Holliday SL, Hart RG, et al. Cognitive impairment in lacunar strokes: the SPS3 trial. Ann Neurol. 2012;72:351–62.

    PubMed Central  PubMed  Google Scholar 

  4. Rabadi MH, Rabadi FM, Edelstein L, Peterson M. Cognitively impaired stroke patients do benefit from admission to an acute rehabilitation unit. Arch Phys Med Rehabil. 2008;8:1006–18.

    Google Scholar 

  5. Zinn S, Dudley TK, Bosworth HB, Hoenig HM, Duncan PW, Horner RD. The effect of poststroke cognitive impairment on rehabilitation process and functional outcome. Arch Phys Med Rehabil. 2004;85:1084–90.

    PubMed  Google Scholar 

  6. De Wit L, Putman K, Devos H, Brinkmann N, Dejaeger E, De Weerdt W, et al. Five-year mortality and related prognostic factors after inpatient stroke rehabilitation: a European multi-centre study. J Rehabil Med. 2012;44:547–52.

    PubMed  Google Scholar 

  7. Moody DM, Bell MA, Challa VR. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. Am J Neuroradiol. 1990;11:431–9.

    CAS  PubMed  Google Scholar 

  8. Pantoni L, Garcia J. Pathogenesis of leukoaraiosis. Stroke. 1997;28:652–9.

    CAS  PubMed  Google Scholar 

  9. Rowbotham GF, Little E. Circulation of the cerebral hemispheres. Br J Surg. 1965;52:8–21.

    CAS  PubMed  Google Scholar 

  10. van den Bergh R. Centrifugal elements in the vascular pattern of the deep intracerebral blood supply. Angiology. 1969;20:88–94.

    PubMed  Google Scholar 

  11. de Reuck J. The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol. 1971;5:321–34.

    PubMed  Google Scholar 

  12. Challa VR, Bell MA, Moody DM. A combined hematoxylin-eosin, alkaline phosphatase and high resolution microradiographic study of lacunes. Clin Neuropathol. 1990;9:196–204.

    CAS  PubMed  Google Scholar 

  13. Ostrow PT, Miller LL. Pathology of small artery disease. Adv Neurol. 1993;62:93–125.

    CAS  PubMed  Google Scholar 

  14. Brown WR, Moody DM, Challa VR, Thore CR, Anstrom JA. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci. 2002;203–204:159–63.

    PubMed  Google Scholar 

  15. Englund E. Neuropathology of white matter lesions in vascular cognitive impairment. Cerebrovasc Dis. 2002;13 Suppl 2:11–5.

    PubMed  Google Scholar 

  16. Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology. 1965;15:774–84.

    CAS  PubMed  Google Scholar 

  17. Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol (Berl). 1968;12:1–15.

    CAS  Google Scholar 

  18. Murdoch G. Staining for apoptosis: now neuropathologists can “see” leukoaraiosis. Am J Neuroradiol. 2000;21:42–3.

    CAS  PubMed  Google Scholar 

  19. Janota I, Mirsen TR, Hachinski VC, Lee DH, Merskey H. Neuropathologic correlates of leuko-araiosis. Arch Neurol. 1989;46:1125–8.

    Google Scholar 

  20. O’Sullivan M, Lythgoe DJ, Pereira AC, Summers PE, Jarosz JM, Williams SCR, et al. Patterns of cerebral blood flow reduction in patients with ischaemic leukoaraiosis. Neurology. 2002;59:321–6.

    PubMed  Google Scholar 

  21. Birns JM. Investigation of the relationship between blood pressure, white matter disease load and cognitive performance in patients with cerebral small vessel disease. PhD Thesis. University of London. 2008.

    Google Scholar 

  22. Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I. Increased blood-brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003;74:70–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Iwata A, Koike F, Arasaki K, Tamaki M. Blood brain barrier destruction in hyperglycaemic chorea in a patient with poorly controlled diabetes. J Neurol Sci. 1999;163:90–3.

    CAS  PubMed  Google Scholar 

  24. Hunt BJ, Jurd KM. Endothelial cell activation. A central pathophysiological process. BMJ. 1998;316:1328–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Hassan A, Hunt BJ, O’Sullivan M, Parmar K, Bamford JM, Briley D, et al. Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain. 2003;126:424–32.

    PubMed  Google Scholar 

  26. Lin JX, Tomimoto H, Akiguchi I, Matsuo A, Wakita H, Shibasaki H, et al. Vascular cell components of the medullary arteries in Binswanger’s disease brains: a morphometric and immunoelectron microscopic study. Stroke. 2000;31:1838–42.

    CAS  PubMed  Google Scholar 

  27. Fassbender K, Bertsch T, Mielke O, Muhlhauser F, Hennerici M. Adhesion molecules in cerebrovascular diseases. Stroke. 1999;30:1647–50.

    CAS  PubMed  Google Scholar 

  28. Tomimoto H, Akiguchi I, Wakita H, Osaki A, Hayashi M, Yamamoto Y. Coagulation activation in patients with Binswanger Disease. Arch Neurol. 1999;56:1104–8.

    CAS  PubMed  Google Scholar 

  29. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterisation of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;425:534–9.

    Google Scholar 

  30. Okamoto Y, Yamamoto T, Kalaria RN, Senzaki H, Maki T, Hase Y, et al. Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 2012;123:381–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Greenberg SM, Vonsattel JP, Segal AZ, Chiu RI, Clatworthy AE, Liao A, et al. Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology. 1998;50:961–5.

    CAS  PubMed  Google Scholar 

  32. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol. 2003;62:1287–301.

    PubMed  Google Scholar 

  33. Yamada M. Risk factors for cerebral amyloid angiopathy in the elderly. Ann N Y Acad Sci. 2002;977:37–44.

    PubMed  Google Scholar 

  34. Lezak MD. Neuropsychological assessment. 3rd ed. New York: Oxford University Press; 1995.

    Google Scholar 

  35. Kaplan H, Sadock BJ, Grebb JA. Neuropsychological assessment of adults. In: Kaplan and Sadock’s synopsis of psychiatry: behavioral sciences/clinical psychiatry. 7th ed. Philadelphia: Williams and Wilkins Press; 1994.

    Google Scholar 

  36. National Institute for Health and Care Excellence (NICE). Stroke quality standard. London; 2010.

    Google Scholar 

  37. Stuss DT, Meiran N, Guzman DA, Lafleche G, Willmer J. Do long tests yield a more accurate diagnosis of dementia than short tests? A comparison of 5 neuropsychological tests. Arch Neurol. 1996;53:1033–9.

    CAS  PubMed  Google Scholar 

  38. Simard M, van Reekum R. Memory assessment in studies of cognition-enhancing drugs for Alzheimer’s disease. Drugs Aging. 1999;14:197–230.

    CAS  PubMed  Google Scholar 

  39. Pendlebury ST, Cuthbertson FC, Welch SJ, Mehta Z, Rothwell PM. Underestimation of cognitive impairment by Mini-Mental State Examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke. 2010;41:1290–3.

    PubMed  Google Scholar 

  40. Salvadori E, Pasi M, Poggesi A, Chiti G, Inzitari D, Pantoni L. Predictive value of MoCA in the acute phase of stroke on the diagnosis of mid-term cognitive impairment. J Neurol. 2013;260:2220–7.

    CAS  PubMed  Google Scholar 

  41. Blackburn DJ, Bafadhel L, Randall M, Harkness KA. Cognitive screening in the acute stroke setting. Age Ageing. 2013;42:113–6.

    PubMed Central  PubMed  Google Scholar 

  42. Royal College of Physicians, The Intercollegiate Stroke Working Party. National clinical guidelines for stroke. 4th ed. London: Royal College of Physicians of London; 2012. Accessed at: http://www.rcplondon.ac.uk/sites/default/files/national-clinical-guidelines-for-stroke-fourth-edition.pdf.

    Google Scholar 

  43. Pendlebury ST, Markwick A, de Jager CA, Zamboni G, Wilcock GK, Rothwell PM. Differences in cognitive profile between TIA, stroke and elderly memory research subjects: a comparison of the MMSE and MoCA. Cerebrovasc Dis. 2012;34:48–54.

    CAS  PubMed  Google Scholar 

  44. O’Sullivan M, Morris RG, Markus HS. Brief cognitive assessment for patients with cerebral small vessel disease. J Neurol Neurosurg Psychiatry. 2005;76:1140–5.

    PubMed Central  PubMed  Google Scholar 

  45. Brookes RL, Hannesdottir K, Lawrence R, Morris RG, Markus HS. Brief memory and executive test: evaluation of a new screening test for cognitive impairment due to small vessel disease. Age Ageing. 2012;41:212–8.

    PubMed Central  PubMed  Google Scholar 

  46. Bickerton W, Riddoch MJ, Samson D, Balani AB, Mistry B, Humphreys GW. Systematic assessment of apraxia and functional predictions from the Birmingham cognitive screen. J Neurol Neurosurg Psychiatry. 2012;83:513–21.

    PubMed  Google Scholar 

  47. Peters R, Pinto EM. Predictive value of the clock drawing test. A review of the literature. Dement Geriatr Cogn Disord. 2008;26:351–5.

    PubMed  Google Scholar 

  48. Birns J, Kalra L. Subcortical vascular cognitive impairment – the pathology and pathophysiology. Rev Clin Gerontol. 2007;17:39–44.

    Google Scholar 

  49. Brooks DN, Baddeley AD. What can amnesic patients learn? Neuropsychologia. 1976;14:111–29.

    CAS  PubMed  Google Scholar 

  50. Graf P, Schacter DL. Implicit and explicit memory for new associations in normal and amnesic subjects. J Exp Psychol. 1985;11:501–18Is.

    CAS  Google Scholar 

  51. Akiguchi I, Ino T, Nabatame H, Udaka F, Matsubayashi K, Fukuyama H, et al. Acute-onset amnestic syndrome with localized infarct on the dominant side—comparison between anteromedial thalamic lesion and posterior cerebral artery territory lesion. Jpn J Med. 1987;26:15–20.

    CAS  PubMed  Google Scholar 

  52. Szabo K, Förster A, Jäger T, Kern R, Griebe M, Hennerici MG, et al. Hippocampal lesion patterns in acute posterior cerebral artery stroke: clinical and MRI findings. Stroke. 2009;40:2042–5.

    PubMed  Google Scholar 

  53. Hancock P, Larner AJ. Diagnostic utility of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) and its combination with the Addenbrooke’s Cognitive Examination-Revised (ACE-R) in a memory clinic-based population. Int Psychogeriatr. 2009;21:526–30.

    CAS  PubMed  Google Scholar 

  54. Koekkoek PS, Rutten GEHM, van den Berg E, van Sonsbeek S, Gorter KJ, Kappelle LJ, et al. The “test your memory” test performs better than the MMSE in a population without known cognitive dysfunction. J Neurol Sci. 2013;328:92–7.

    PubMed  Google Scholar 

  55. Blake H, McKinney M, Treece K, Lee E, Lincoln NB. An evaluation of screening measures for cognitive impairment after stroke. Age Ageing. 2002;31:451–6.

    PubMed  Google Scholar 

  56. Kreisler A, Godefroy O, Delmaire C, Debachy B, Leclercg M, Pruvo JP, et al. The anatomy of aphasia revsted. Neurology. 2000;54:1117–23.

    CAS  PubMed  Google Scholar 

  57. Salter K, Jutai J, Foley N, Hellings C, Teasell R. Identification of aphasia post stroke: a review of screening assessment tools. Brain Inj. 2006;20:559–68.

    PubMed  Google Scholar 

  58. Desmond DW, Tatemichi TK, Figueroa M, Gropen TI, Stern Y. Disorientation following stroke: frequency, course, and clinical correlates. J Neurol. 1994;241:585–91.

    CAS  PubMed  Google Scholar 

  59. Pedersen PM, Jorgensen HS, Hakayama H, Raaschou HO, Olsen TS. Orientation in the acute and chronic stroke patient: impact on ADL and social activities. The Copenhagen stroke study. Arch Phys Med Rehabil. 1996;77:336–9.

    CAS  PubMed  Google Scholar 

  60. Barker-Collo SL, Feigin VL, Lawes CM, Parag V, Senior H, Rodgers A. Reducing attention deficits after stroke using attention process training: a randomised controlled trial. Stroke. 2009;40:3292–8.

    Google Scholar 

  61. Nijboer TC, Kollen BJ, Kwakkel G. The impact of recovery of visuo-spatial neglect on motor recovery of the upper paretic limb after stroke. PLoS One. 2014;9:e100584.

    PubMed Central  PubMed  Google Scholar 

  62. Choi HJ, Lee DY, Seo EH, Jo MK, Sohn BK, Choe YM, et al. A normative study of the digit span in an educationally diverse elderly population. Psychol Invest. 2014;11:39–43.

    Google Scholar 

  63. Lafosse JM, Reed BR, Mungas D, Sterling SB, Wahbeh H, Jagust WJ. Fluency and memory differences between ischaemic vascular dementia and Alzheimer’s disease. Neuropsychology. 1997;11:514–22.

    CAS  PubMed  Google Scholar 

  64. Cummings JL. Frontal-subcortical circuits and human behavior. J Psychosom Res. 1998;44:627–8.

    CAS  PubMed  Google Scholar 

  65. Roman RC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC. Subcortical ischaemic vascular dementia. Lancet Neurol. 2002;1:426–36.

    PubMed  Google Scholar 

  66. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348:1215–22.

    PubMed  Google Scholar 

  67. Bensity S, Gouw AA, Porcher R, Madureira S, Hernandez K, Poggesi A, et al. Location of lacunar infarcts correlates with cognition in a sample of non- disabled subjects with age-related white-matter changes: the LADIS study. J Neurol Neurosurg Psychiatry. 2009;80:478–83.

    Google Scholar 

  68. Benjamin P, Lawrence AJ, Lambert C, Patel B, Chung AW, MacKinnon AD, et al. Strategic lacunes and their relationship to cognitive impairment in cerebral small vessel disease. Neuroimage Clin. 2014;4:828–37.

    PubMed Central  PubMed  Google Scholar 

  69. Bowler JV. Vascular cognitive impairment. Stroke. 2004;35:386–8.

    CAS  PubMed  Google Scholar 

  70. McManus J, Pathansali R, Hassan H, Ouldred E, Cooper D, Stewart R, et al. The course of delirium in acute stroke. Age Ageing. 2009;38:285–9.

    Google Scholar 

  71. Caeiro L, Ferro JM, Albuquerque E, Figueira ML. Delirium in the first days of acute stroke. J Neurol. 2004;251:171–8.

    PubMed  Google Scholar 

  72. Miu DK, Yeung JC. Incidence of post-stroke delirium and 1 year outcome. Geriatr Gerontol Int. 2013;13:123–9.

    PubMed  Google Scholar 

  73. Kostalova M, Bednarik J, Mitasova A, Dušek L, Michalcakova R, Kerkovsky M, et al. Towards a predictive model for post-stroke delirium. Brain Inj. 2012;26:962–71.

    PubMed  Google Scholar 

  74. Trzepacs PT. Is there a final common neural pathway in delirium? Focus on actylcholine and dopamine. Semin Clin Neuropsychol. 2000;5:132–48.

    Google Scholar 

  75. Wang HR, Woo YS, Bahk WM. Atypical antipsychotics in the treatment of delirium. Psychiatry Clin Neurosci. 2013;67:323–31.

    CAS  PubMed  Google Scholar 

  76. Hshieh TT, Fong TG, Marcantonio ER, Inouye SK. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol Biol Sci. 2008;63:764–72.

    Google Scholar 

  77. Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI. Clarifying confusion: the confusion assessment method. A new method of detection of delirium. Ann Intern Med. 1990;113:941–8.

    CAS  PubMed  Google Scholar 

  78. Trzepacz PT, Baker RW, Greenhouse J. A symptom rating scale of delirium. Psychiatry Res. 1988;23:89–97.

    CAS  PubMed  Google Scholar 

  79. Rockwood K, Middleton L. Physical activity and the maintenance of cognitive function. Alzheimers Dement. 2007;3:S38–44.

    PubMed  Google Scholar 

  80. Quaney BM, Boyd LA, McDowd JM, Zahner LH, He J, Mayo MS, et al. Aerobic exercise improves cognition and motor function poststroke. Neurorehabil Neural Repair. 2009;23:879–85.

    PubMed Central  PubMed  Google Scholar 

  81. Meyer JS, Judd BW, Tawaklna T, Rogers RL, Mortel KF. Improved cognition after control of risk factors for multi-infarct dementia. JAMA. 1986;256:2203–9.

    CAS  PubMed  Google Scholar 

  82. Clare L, Woods RT, Moniz Cook ED, Orrell M, Spector A. Cognitive rehabilitation and cognitive training for early-stage Alzheimer’s disease and vascular dementia. Cochrane Database Syst Rev 2003;(4):CD003260.

    Google Scholar 

  83. Doornhein K, De Haan EHF. Cognitive training for memory deficits in stroke patients. Neuropsychol Rehabil. 1998;8:393–400.

    Google Scholar 

  84. Kaschel R, Della Sala S, Cantagallo A, Fahlböck A, Laaksonen A, Kazen M. Imagery mnemonics for the rehabilitation of memory: a randomised group controlled trial. Neuropsychol Rehabil. 2002;12:127–53.

    Google Scholar 

  85. Bowen A, Hesketh A, Patchick E, Young A, Davies L, Vail A, et al. Effectiveness of enhanced communication therapy in the first four months after stroke for aphasia and dysarthria: a randomized controlled trial. BMJ. 2012;345:e4407.

    PubMed Central  PubMed  Google Scholar 

  86. Rudd AG, Wolfe CD. Early speech and language therapy after stroke a waste of time? BMJ. 2012;345:e4870.

    PubMed  Google Scholar 

  87. Brady MC, Kelly H, Godwin J, Enderby P. Speech and Language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2012;5:CD000425.

    Google Scholar 

  88. Godecke E, Ciccone NA, Granger AS, Rait T, West D, Cream A, et al. A comparison of aphasia therapy outcomes before and after a very early rehabilitation programme following stroke. Int J Lang Commun Disord. 2014;49:149–61.

    PubMed  Google Scholar 

  89. Khedr EM, Abo El-Fetoh N, Ali AM, El-Hammady DH, Khalifa H, Atta H, et al. Dual-hemisphere repetitive transcranial magnetic stimulation for rehabilitation of poststroke aphasia: a randomized, double-blind clinical trial. Neurorehabil Neural Repair. 2014. doi:10.1177/1545968314521009.

    PubMed  Google Scholar 

  90. Dronkers NF, Husted DA, Deutsch G, Taylor K, Saunders G, Merzenich M. Lesion site as a predictor of improvement after Fast Forword treatment in adult aphasic patients. Brain Lang. 1999;9:450–552.

    Google Scholar 

  91. Winkens I, Van Heugten CM, Wade DT, Habets EJ, Fasotti L. Efficacy of time pressure management in stroke patients with slowed information processing: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90:1672–9.

    PubMed  Google Scholar 

  92. Agosta S, Herpich F, Miceli G, Ferraro F, Battelli L. Contralesional rTMS relieves visual extinction in chronic stroke. Neuropsychologia. 2014;62:269–76.

    PubMed  Google Scholar 

  93. Lim JY, Kang EK, Paik NJ. Repetitive transcranial magnetic stimulation to hemispatial neglect in patients after stroke: an open-label pilot study. J Rehabil Med. 2010;42:447–52.

    PubMed  Google Scholar 

  94. Sturm W, Willmes K. Efficacy of a reaction training on various attentional and cognitive functions in stroke patients. Neuropsychol Rehabil. 1991;1:259–80.

    Google Scholar 

  95. Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Ostensson ML, Bartfai A, et al. Computerized working memory training after stroke: a pilot study. Brain Inj. 2007;21:21–9.

    CAS  PubMed  Google Scholar 

  96. Cruz VT, Pais J, Bento V, Mateus C, Colunas M, Alves I, et al. A rehabilitation tool designed for intensive web-based cognitive training: description and usability study. JMIR Res Protocol. 2013;2:e59.

    Google Scholar 

  97. Loetscher T, Lincoln NB. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst Rev. 2013;5:CD002842.

    Google Scholar 

  98. Schottke H. Rehabilitation of attention deficits after stroke – efficacy of a neuropsychological training program for attention deficits. Verhaltenstherapie. 1997;7:21–3.

    Google Scholar 

  99. Rohring S, Kulke H, Reulbach U, Peetz H, Schupp W. Effectivity of a neuropsychological training in attention functions by a teletherapeutic setting. Neurol Rehabil. 2004;10:239–46.

    Google Scholar 

  100. Gillespie DC, Bowen A, Chung CS, Cockburn J, Knapp P, Pollock A. Rehabilitation for post-stroke cognitive impairment: an overview of recommendations arising from systematic reviews of current evidence. Clin Rehabil. 2015;29:120–8.

    PubMed  Google Scholar 

  101. Chung CS, Pollock A, Campbell T, Durward BR, Hagen S. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst Rev. 2013;4:CD008391.

    Google Scholar 

  102. Tzourio C, Anderson C, Chapman N, Woodward M, Neal B, MacMahon S, PROGRESS Collaborative Group. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Int Med. 2003;163:1069–75.

    CAS  Google Scholar 

  103. Friday G, Alter M, Lai SM. Control of hypertension and risk of stroke recurrence. Stroke. 2002;33:2652–7.

    PubMed  Google Scholar 

  104. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    PubMed  Google Scholar 

  105. Birns J, Markus H, Kalra L. Blood pressure reduction for vascular risk: is there a price to be paid? Stroke. 2005;36:1308–13.

    PubMed  Google Scholar 

  106. Spence JD. Cerebral consequences of hypertension: where do they lead? J Hypertens Suppl. 1996;14:S139–45.

    CAS  PubMed  Google Scholar 

  107. Skoog I. A review on blood pressure and ischaemic white matter lesions. Dement Geriatr Cogn Disord. 1998;9 Suppl 1:13–9.

    PubMed  Google Scholar 

  108. O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry. 2004;75:441–7.

    PubMed Central  PubMed  Google Scholar 

  109. de la Torre JC, Fortin T. A chronic physiological rat model of Alzheimer’s disease. Behav Brain Res. 1994;63:35–40.

    PubMed  Google Scholar 

  110. Birns J, Kalra L. Cognitive function and hypertension. J Hum Hypertens. 2009;23:86–96.

    CAS  PubMed  Google Scholar 

  111. Shi J, Yang SH, Stubley L, Day AL, Simpkins JW. Hypoperfusion induces overexpression of beta-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res. 2000;853:1–4.

    CAS  PubMed  Google Scholar 

  112. Tanaka M, Fukuyama H, Yamauchi H, Narita M, Nabatame H, Yokode M, et al. Regional cerebral blood flow abnormalities in nondemented patients with memory impairment. J Neuroimaging. 2002;12:112–8.

    PubMed  Google Scholar 

  113. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ. Low blood pressure and the risk of dementia in very old individuals. Neurology. 2003;61:1667–72.

    CAS  PubMed  Google Scholar 

  114. Birns J, Morris R, Jarosz J, Markus HS, Kalra L. Hypertension-related cognitive decline: is the time right for intervention studies? Minerva Cardioangiol. 2009;57:813–30.

    CAS  PubMed  Google Scholar 

  115. Birns J, Morris R, Donaldson N, Kalra L. The effects of blood pressure reduction on cognitive function: a review of effects based on pooled data from clinical trials. J Hypertens. 2006;24:1907–14.

    CAS  PubMed  Google Scholar 

  116. SPS3 Study Group, Benavente OR, Coffey CS, Conwit R, Hart RG, McClure LA, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013;382:507–15.

    Google Scholar 

  117. Pearce LA, McClure LA, Anderson DC, Jacova C, Sharma M, Hart RG, Benavente OR; SPS3 Investigators. Effects of long-term blood pressure lowering and dual antiplatelet treatment on cognitive function in patients with recent lacunar stroke: a secondary analysis from the SPS3 randomised trial. Lancet Neurol. 2014;13:1177–85.

    Google Scholar 

  118. Pantoni L, Carosi M, Amigoni S, Mascalchi M, Inzitari D. A preliminary open trial with nimodipine in patients with cognitive impairment and leukoaraiosis. Clin Neuropharmacol. 1996;19:497–506.

    CAS  PubMed  Google Scholar 

  119. Tomassoni D, Lanari A, Silvestrelli G, Traini E, Amenta F. Nimodipine and its use in cerebrovascular disease: evidence from recent preclinical and controlled clinical studies. Clin Exp Hypertens. 2008;30:744–66.

    CAS  PubMed  Google Scholar 

  120. Blackburn DJ, Krishnan K, Fox L, Ballard C, Burns A, Ford GA, et al. Prevention of Decline in Cognition after Stroke Trial (PODCAST): a study protocol for a factorial randomised controlled trial of intensive versus guideline lowering of blood pressure and lipids. Trials. 2013;14:401.

    PubMed Central  PubMed  Google Scholar 

  121. Reid CM, Storey E, Wong TY, Woods R, Tonkin A, Wang JJ, ASPREE Study Group, et al. Aspirin for the prevention of cognitive decline in the elderly: rationale and design of a neuro-vascular imaging study (ENVIS-ion). BMC Neurol. 2012;12:3. doi:10.1186/1471-2377-12-3.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7–22.

    Google Scholar 

  123. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, PROSPER study group, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–30.

    CAS  PubMed  Google Scholar 

  124. Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, et al. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A. 1994;91:6369–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Tawakol A, Omland T, Gerhard M, Wu JT. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation. 1997;95:1119–21.

    CAS  PubMed  Google Scholar 

  126. Durand P, Prost M, Loreau N, Lussier-Cacan S, Blache D. Impaired homocysteine metabolism and atherothrombotic disease. Lab Invest. 2001;81:645–72.

    CAS  PubMed  Google Scholar 

  127. Matsui T, Arai H, Yuzuriha T, Yao H, Miura M, Hashimoto S, et al. Elevated plasma homocysteine levels and risk of silent brain infarction in elderly people. Stroke. 2001;32:1116–9.

    CAS  PubMed  Google Scholar 

  128. Vermeer SE, van Dijk EJ, Koudstaal PJ, Oudkerk M, Hofman A, Clarke R, et al. Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam Scan Study. Ann Neurol. 2002;51:285–9.

    CAS  PubMed  Google Scholar 

  129. Sachdev P, Parslow R, Salonikas C, Lux O, Wen W, Kumar R, et al. Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men. Arch Neurol. 2004;61:1369–76.

    PubMed  Google Scholar 

  130. Christen WG, Ajani UA, Glynn RJ, Hennekens CH. Blood levels of homocysteine and increased risks of cardiovascular disease: causal or casual? Arch Intern Med. 2000;160:422–34.

    CAS  PubMed  Google Scholar 

  131. Hankey GJ. Is homocysteine a causal and treatable risk factor for vascular diseases of the brain (cognitive impairment and stroke)? Ann Neurol. 2002;51:279–81.

    PubMed  Google Scholar 

  132. Hankey GJ. Is plasma homocysteine a modifiable risk factor for stroke? Nat Clin Pract Neurol. 2006;2:26–33.

    CAS  PubMed  Google Scholar 

  133. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–60.

    CAS  PubMed  Google Scholar 

  134. Molgaard CA. Multivariate analysis of Hachinski’s scale for discriminating senile dementia of the Alzheimer’s type from multiinfarct dementia. Neuroepidemiology. 1987;6:153–60.

    CAS  PubMed  Google Scholar 

  135. Malouf R, Birks J. Donepezil for vascular cognitive impairment. Cochrane Database Syst Rev. 2004;(1):CD004395.

    Google Scholar 

  136. Román GC, Salloway S, Black SE, Royall DR, Decarli C, Weiner MW, et al. Randomized, placebo-controlled, clinical trial of donepezil in vascular dementia: differential effects by hippocampal size. Stroke. 2010;41:1213–21.

    PubMed Central  PubMed  Google Scholar 

  137. Dichgans M, Markus HS, Salloway S, Verkkoniemi A, Moline M, Wang Q, et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol. 2008;7:310–8.

    CAS  PubMed  Google Scholar 

  138. Birks J, Craig D. Galantamine for vascular cognitive impairment. Cochrane Database Syst Rev. 2006;4:CD004746.

    Google Scholar 

  139. Birks J, McGuinness B, Craig D. Rivastigmine for vascular cognitive impairment. Cochrane Database Syst Rev. 2013;5:CD004744.

    Google Scholar 

  140. Narasimhalu K, Effendy S, Sim CH, Lee JM, Chen I, Hia SB, et al. A randomized controlled trial of rivastigmine in patients with cognitive impairment no dementia because of cerebrovascular disease. Acta Neurol Scand. 2010;121:217–24.

    CAS  PubMed  Google Scholar 

  141. Orgogozo JM, Rigaud AS, Stöffler A, Möbius HJ, Forette F. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33:1834–9.

    CAS  PubMed  Google Scholar 

  142. Wilcock G, Möbius HJ, Stöffler A, MMM 500 Group. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17:297–305.

    CAS  PubMed  Google Scholar 

  143. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Surgery and Anesthesia, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713.

    PubMed Central  PubMed  Google Scholar 

  144. Alexopoulos GS, Meyers BS, Young RC, Kalayam B, Kakuma T, Gabrielle M, et al. Executive dysfunction and long-term outcomes of geriatric depression. Arch Gen Psychiatry. 2000;57:285–9.

    CAS  PubMed  Google Scholar 

  145. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23:349–57.

    CAS  PubMed  Google Scholar 

  146. Narushima K, Paradiso S, Moser DJ, Jorge R, Robinson RG. Effect of antidepressant therapy on executive function after stroke. Br J Psychiatry. 2007;190:260–5.

    PubMed  Google Scholar 

  147. Royall DR, Cordes JA, Román G, Velez A, Edwards A, Schillerstrom JS, et al. Sertraline improves executive function in patients with vascular cognitive impairment. J Neuropsychiatry Clin Neurosci. 2009;21:445–54.

    CAS  PubMed  Google Scholar 

  148. Alvarez-Sabín J, Ortega G, Jacas C, Santamarina E, Maisterra O, Ribo M, et al. Long-term treatment with citicoline may improve poststroke vascular cognitive impairment. Cerebrovasc Dis. 2013;35:146–54.

    PubMed  Google Scholar 

  149. Guekht AB, Moessler H, Novak PH, Gusev EI; Cerebrolysin Investigators. Cerebrolysin in vascular dementia: improvement of clinical outcome in a randomized, double-blind, placebo-controlled multicenter trial. Cochrane Database Syst Rev. 2012;5:CD000425.

    Google Scholar 

  150. Chen N, Yang M, Guo J, Zhou M, Zhu C, He L. Cerebrolysin for vascular dementia. Cochrane Database Syst Rev. 2013;1:CD008900.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, B., Birns, J. (2015). Post-Stroke Cognitive Impairment. In: Bhalla, A., Birns, J. (eds) Management of Post-Stroke Complications. Springer, Cham. https://doi.org/10.1007/978-3-319-17855-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17855-4_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17854-7

  • Online ISBN: 978-3-319-17855-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics