Skip to main content

New Trends in Biomaterials

  • Chapter
  • First Online:
Biomaterials and Their Applications

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1406 Accesses

Abstract

Since 1991, when the Mobil oil corporation synthesized the silica based MCM-41, highly ordered mesoporous materials attracted many scientists due to their high potential in different applications. The special characteristic of these materials are having high surface area and pore volume with narrow pore size distribution. Due to the IUPAC definition of mesoporous materials, materials with pores in the range of 2–50 nm are called mesoporous. Main applications of these materials are in the field of catalysts, solar cells, lasers, sensors, pigments, light filters, environmental, tissue engineering and drug delivery systems and etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Single walled carbon nanotube.

References

  1. Pannone PJ (2007) Trends in biomaterials research. Nova Science Pub Incorporated, Hauppauge

    Google Scholar 

  2. Pramanik N, Imae T (2012) Fabrication and characterization of dendrimer-functionalized mesoporous hydroxyapatite. Langmuir 28(39):14018–14027

    Article  Google Scholar 

  3. Ye F, Guo H, Zhang H, He X (2010) Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater 6(6):2212–2218

    Article  Google Scholar 

  4. Li X, Wang X, Zhang L, Chen H, Shi J (2009) MBG/PLGA composite microspheres with prolonged drug release. J Biomed Mater Res B Appl Biomater 89(1):148–154

    Article  Google Scholar 

  5. Geckeler KE, Nishide H (2009) Advanced nanomaterials. Wiley, Hoboken

    Google Scholar 

  6. Binyamin G, Shafi BM, Mery CM (2006) Biomaterials: a primer for surgeons. Semin Pediatr Surg 15(4):276–283

    Article  Google Scholar 

  7. Lemons JE, Ratner BD, Hoffman AS, Schoen FJ (2013) Biomaterials science an introduction to materials in medicine, 3rd edn. Elsevier Ltd, Amsterdam

    Google Scholar 

  8. Webster TJ, Hellenmeyer EL, Price RL (2005) Increased osteoblast functions on theta+ delta nanofiber alumina. Biomaterials 26(9):953

    Article  Google Scholar 

  9. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51(3):475–483

    Article  Google Scholar 

  10. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2001) Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 22(11):1327–1333

    Article  Google Scholar 

  11. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4740

    Article  Google Scholar 

  12. Webster TJ (2007) Nanotechnology for the regeneration of hard and soft tissues. World Scientific, Singapore

    Google Scholar 

  13. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 8(2):147–166

    Article  Google Scholar 

  14. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4(1):66–80

    Article  Google Scholar 

  15. Zadegan S, Hossainalipour M, Ghassai H, Rezaie HR, Naimi-Jamal MR (2010) Synthesis of cellulose–nanohydroxyapatite composite in 1-n-butyl-3-methylimidazolium chloride. Ceram Int 36(8):2375–2381

    Article  Google Scholar 

  16. Bakhtiari L, Rezaie HR, Hosseinalipour SM, Shokrgozar MA (2010) Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering. Ceram Int 36(8):2421–2426

    Article  Google Scholar 

  17. Bakhtiari L, Hossainalipour SM, Rezaie HR (2012) Effect of gelatin amount on properties of nano-BCP/Gel scaffolds. Int J Mod Phy Conf Ser 5:257–262

    Article  Google Scholar 

  18. Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res Part A 78(3):595–604

    Article  Google Scholar 

  19. Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW (2012) How smart do biomaterials need to be?—a translational science and clinical point of view. Adv Drug Deliv Rev 65:581–603

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Rezaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Rezaie, H.R., Bakhtiari, L., Öchsner, A. (2015). New Trends in Biomaterials. In: Biomaterials and Their Applications. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17846-2_4

Download citation

Publish with us

Policies and ethics