Skip to main content

Formation of the Earth’s Silicate Mantle

  • Chapter
  • First Online:
Some Aspects of the Formation of the Solar System

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 514 Accesses

Abstract

This chapter discusses the energy source and the matter content from which the initial Earth’s mantle was formed. The PT conditions by which the mantle accumulation is provided are defined. Attention is drawn to the role of chondrites of different composition in the frame of the Earth’s heterogeneous accumulation model. The conditions are formulated by which a melted layer at the bottom of the mantle is formed. At the bottom boundary of the layer fraction crystallization occurs. The crystallization of Mg-pyroxene and magnesio-wüstite will lead to the formation at the bottom of the mantle of a layer comprising a mixture of these minerals. We note that, based on seismic data, it can be concluded that, namely by that mineral association, there exists a transition layer “D” on the modern core–mantle boundary. The boundaries between layers shift following the body’s growing surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringwood A (1982) Origin of the earth and moon. Springer-Verlag, New York (1979). Russian version: Nedra, Moscow (in Russian)

    Google Scholar 

  2. Urey H (1956) Abundances of the elements. Rev Mod Phys 28:53–57

    Article  Google Scholar 

  3. Fisher D (1987) The birth of the earth. Columbia University Press, New York

    Google Scholar 

  4. Gopel C, Manhes G, Allegre C (1994) U-Pb systematic of phosphates from unequilibrated ordinary chondrites. Earth Planet Sci Lett 121:153–171

    Article  Google Scholar 

  5. Amelin Y, Connelly J, Zartman R et al (2009) Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems. Geochim Cosmochim Acta 73:5212–5223

    Article  Google Scholar 

  6. Bouvier A, Blichert-Toft V, Moynier F et al (2007) Pb-Pb dating constraints on accretion and cooling history of chondrites. Geochim Cosmochim Acta 71:1583–1604

    Article  Google Scholar 

  7. Krot A, Amelin Y, Bland P et al (2009) Origin and chronology of chondritic components: a review. Geochim Cosmochim Acta 73:4963–4997

    Article  Google Scholar 

  8. Shersten A, Elliot T, Hawskesworth C et al (2006) Hf-W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet Sci Lett 241:530–542

    Article  Google Scholar 

  9. Kleine N, Mezger K, Palme H et al (2005) Early core formation and late accretion of chondrite parent bodies: evidence from 182Hf-182W in CAIs, metal rich chondrites and iron meteorites. Geochim Cosmochim Acta 69:5805–5818

    Article  Google Scholar 

  10. Amelin Y, Krot A (2007) Pb isotopic age of the Allende chondrules. Meteorit Planet Sci 42:1321–1337

    Article  Google Scholar 

  11. Kleine T, Touboul M, Bourdon B et al (2009) Hf-W chronology of accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188

    Article  Google Scholar 

  12. Dodd R (1986) Meteorites: a petrologic-chemical synthesis. Mir, Moscow (in Russian)

    Google Scholar 

  13. Mittelefehldt D, McCoy T, Goodrich C et al (1998) Non-chondritic meteorites from asteroid bodies. Rev Min 36:1–195

    Google Scholar 

  14. Chen J, Tilton G (1976) Isotopic lead investigations of the Allende carbonaceous chondrite. Geochim Cosmochim Acta 40:635–643

    Article  Google Scholar 

  15. Tatsumoto M, Unruh D, Desborough G (1976) U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil. Geochim Cosmochim Acta 40:617–634

    Article  Google Scholar 

  16. Herzberg C, Zang J (1996) Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J Geophys Res 101(B4):8271–8295

    Article  Google Scholar 

  17. Safronov V (1969) Evolution of the protoplanetary cloud and formation of the earth and the planets. Nauka, Moscow (in Russian)

    Google Scholar 

  18. Merk R, Breuer D, Spohn T (2002) Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion. Icarus 159:183–191

    Article  Google Scholar 

  19. Anfilogov V, Khachay Y (2005) A possible scenario of material differentiation at initial stage of the Earth’s formation. Dokl Earth Sci 403A:954–947 (in Russian)

    Google Scholar 

  20. Yang J, Goldstein J, Scott E (2007) Iron meteorite evidence for early formation and catastrophic disruption of proto-planets. Nature 446(7138):888–891

    Article  Google Scholar 

  21. Yang J, Goldstein J, Scott E (2008) Metallographic cooling rates and origin of IVA iron meteorites. Geochim Cosmochim Acta 12:3043–3061

    Article  Google Scholar 

  22. Brearley A, Jones R (1998) Chondrite meteorites. Rev Min 36:83–190

    Google Scholar 

  23. Anfilogov V, Bykov V, Osipov A (2005) Silicate melts. Nauka, Moscow (in Russian)

    Google Scholar 

  24. Belogub E, Kozlov E, Yu Z et al (1999) Transformation of rocks of spherical stress waves. Uralskiy Mineralogicheskiy Sbornic № 9. Ural Branch of RUS Press. MIASS, pp 206–223 (in Russian)

    Google Scholar 

  25. Tomeoka K, Ohnishi I (2011) A hydrated class in the Mokoia CV3 carbonaceous chondrite: evidence for intensive aqueous alteration in the CV parent body. Geochim Cosmochim Acta 75:6064–6079

    Article  Google Scholar 

  26. Burkhardt C, Kleine T, Bourdon B et al (2008) Hf-W mineral isochronal for Ca, Al-rich inclusions: Age of the solar system and timing of core formation in planetesimals. Geochim Cosmochim Acta 72:6177–6197

    Article  Google Scholar 

  27. Babechuk M, Kamber B, Greig A et al (2010) The behavior of tungsten during mantle melting revised with implications for planetary differentiation time scale. Geochim Cosmochim Acta 74:1448–1470

    Article  Google Scholar 

  28. Anfilogov V, Khachay Y (2013) Evolution of core and silicate envelopes at heterogeneous accumulation of the Earth. Lithosphera 4:146–153 (in Russian)

    Google Scholar 

  29. Khachay Y, Anfilogov V (2009) Variant of temperature distributions in the Earth on its accumulation. In: The study of the earth as planet by methods of geophysics, geodesy and astronomy. Proceedings 6th Orlov Conference, Kiev, pp 197–202

    Google Scholar 

  30. Khachay Y, Anfilogov V (2009) The temperature distribution numerical models for the Earth envelopes at its accumulation stages. In: Geodynamics. Deep structure. The Earth’s thermal field. Geophysical fields interpretation. Proceedings 5th Conference on behalf of Bulashevich. Ekaterinburg, pp 520–522 (in Russian)

    Google Scholar 

  31. Marakushev A (1991) The early earth’s crust on meteorite investigation data. In: Early Crust: The Composition and Age. Nauka, Moscow, pp 27–38 (in Russian)

    Google Scholar 

  32. Mason B (1962) Meteorites. Wiley, New York

    Google Scholar 

  33. Agee C, Li J, Shannon M et al (1995) Pressure-temperature phase diagram for the Allende meteorite. J Geophys Res 100(B9):17725–17740

    Article  Google Scholar 

  34. Tikhonov A, Liubimova E, Vlasov V (1969) About the evolution of fusion zones in the thermal history of the earth. Dokl Acad Sci USSR 188:338–342 (in Russian)

    Google Scholar 

  35. Saxena S, Lasor P, Dubrovinsky L (2000) A model of earth’s deep interior based on mineralogical data. Mineral Petrol 69(1):1–10

    Article  Google Scholar 

  36. Herlund J, Thomas C, Trackley P (2005) A doubling of the post-perovskite phase boundary and structure of the earth’s lower mantle. Nature 434:882–886

    Article  Google Scholar 

  37. Ozava H, Hirise K, Mitome M et al (2009) Experimental study of reaction between perovskite band molten iron to 146 GPa and implication for chemically distinct buoyant layer at the top of the core. Phys Chem Miner 36:365–363

    Google Scholar 

  38. Ringwood A, Hibberson W (1990) The system Fe-FeO revised. Phys Chem Miner 17:313–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod N. Anfilogov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Anfilogov, V.N., Khachay, Y.V. (2015). Formation of the Earth’s Silicate Mantle. In: Some Aspects of the Formation of the Solar System. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17831-8_5

Download citation

Publish with us

Policies and ethics