Skip to main content

The Model of the Earth’s Heterogeneous Accumulation

  • Chapter
  • First Online:
Some Aspects of the Formation of the Solar System

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 509 Accesses

Abstract

This chapter presents an overview of the main conditions demanded by the experimental data that the models of the Earth’s formation have to satisfy. We suggest a new model of the Earth’s heterogeneous accumulation. The results of the numerical modeling, presented in this chapter, of the temperature distribution in the pre-planetary body allow us to determine that the heat released due to the decay of short-living radioactive elements can provide the melted state in the inner parts of bodies with sizes greater than 50 km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringwood A (1982) Origin of the Earth and Moon. Nedra, Moscow (in Russian)

    Google Scholar 

  2. Safronov V (1969) Evolution of the protoplanetary cloud and formation of the Earth and the planets. Nauka, Moscow (in Russian)

    Google Scholar 

  3. Kuskov O, Khitarov N (1982) Thermodynamics and geochemistry of the Earth’s core and mantle. Nauka, Moscow (in Russian)

    Google Scholar 

  4. Sorokhtin O, Ushakov S (1991) The global evolution of the Earth. Moscow University Press, Moscow (in Russian)

    Google Scholar 

  5. Miyake Y (1965) Elements of geochemistry. Muruzen, Tokyo

    Google Scholar 

  6. Turekian K, Clark S (1969) Inhomogeneous accumulation of the Earth from the primitive solar nebula. Earth Planet Sci Lett 6:346–348

    Article  Google Scholar 

  7. Grossman L (1972) Condensation in the primitive solar nebula. Geochim et Cosmochim Acta 36:597–619

    Article  Google Scholar 

  8. Anders E (1968) Chemical processes in the early solar system, as inferred from meteorites. Account Chem Res 1:289–298

    Article  Google Scholar 

  9. Anderson D, Sammis C, Jordan T (1972) Composition of the mantle and core. In: Robertson E (ed) The nature of the solid Earth. McGraw-Hill, New York, pp 41–66

    Google Scholar 

  10. Cameron A (1973) Accumulation processes in the primitive solar nebula. Icarus 18:407–450

    Article  Google Scholar 

  11. Voitkevich G, Miroshnikov A, Povarennikh A et al (1977) Handbook on geochemistry. Nedra Press, Moscow (in Russian)

    Google Scholar 

  12. Dodd R (1986) Meteorites. A petrologic-chemical synthesis. Mir, Moscow (in Russian)

    Google Scholar 

  13. Davis A, Richter F (2003) Condensation and evaporation of Solar system material. In: Davis A, Holland HD, Turekian KK (eds) Treatise on geochemistry. Meteorites, comets and planets, vol 1, pp 407–427

    Google Scholar 

  14. Grossman L, Larimer J (1974) Early chemical history of the solar system. Rev Geophys Space Phys 12:71–101

    Article  Google Scholar 

  15. Anfilogov V, Khachay Y (2005) A possible scenario of material differentiation at initial stage of the Earth’s formation. Dokl Earth Sci 403A:954–947

    Google Scholar 

  16. Stolper E (1982) Crystallization sequences of Ca-Al inclusions from Allende: An experimental study. Geochim et Cosmochim Acta 46(11):2159–2180

    Article  Google Scholar 

  17. Shersten A, Elliot T, Hawskesworth C et al (2006) Hf-W evidence for rapid differentiation of iron meteorite parental bodies. Earth Planet Sci Lett 241:530–542

    Article  Google Scholar 

  18. Amelin Y, Krot A (2007) Pb isotopic age of the Allende chondrules. Meteorit Planet Sci 42:1321–1337

    Article  Google Scholar 

  19. Connelly R, Amelin Y, Krot A et al (2008) Chronology of the solar system’s oldest solids. Astrophys J 675:L121–L124

    Article  Google Scholar 

  20. Krot A, Amelin Y, Bland P et al (2009) Origin and chronology of chondritic components. A review. Geochim et Cosmochim Acta 73:4963–4997

    Article  Google Scholar 

  21. Harper C, Jacobsen S (1996) Evidence for 182Hf in the early solar system and constraints in the timescale of terrestrial accretion and core formation. Geochim et Cosmochim Acta 60:1131–1153

    Article  Google Scholar 

  22. Kleine N, Mezger K, Palme H et al (2005) Early core formation and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal rich chondrites and iron meteorites. Geochim et Cosmochim Acta 69:5805–5818

    Article  Google Scholar 

  23. Kleine T, Touboul M, Bourdon B et al (2009) Hf-W chronology of accretion and early evolution of asteroids and terrestrial planets. Geochim et Cosmochim Acta 73:5150–5188

    Article  Google Scholar 

  24. Merk R, Breuer D, Spohn T (2002) Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion. Icarus 159:183–191

    Article  Google Scholar 

  25. Lee T, Papanastassiou T, Wasserburg G (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys Res Lett 3:109–112

    Article  Google Scholar 

  26. Pechernikova G, Vitjasev A (2005) Impacts and the early Earth evolution in catastrophic action of cosmic bodies. In: Adushkin VV (ed) Academkniga Press, Moscow (in Russian)

    Google Scholar 

  27. Walter M, Tronnes R (2004) Early Earth differentiation. Earth Planet Sci Lett 225:253–269

    Article  Google Scholar 

  28. Chambers J, Wetherill G (1998) Modeling of the terrestrial planets: N-body integration of preplanetary bodies in three dimensions. Icarus 136:304–327

    Article  Google Scholar 

  29. Agnor C, Capur R, Levison H (1999) On the character and consequences of large impacts in the late stage of terrestrial planets formation. Icarus 142:219–237

    Article  Google Scholar 

  30. Nichols R (2000) Short-living radionuclides in meteorites: constraints on nebular time scales to the production of solids. Space Sci Rev 1–2:113–122

    Article  Google Scholar 

  31. Ghosh A, Sween H (1998) The thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 143:187–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod N. Anfilogov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Anfilogov, V.N., Khachay, Y.V. (2015). The Model of the Earth’s Heterogeneous Accumulation. In: Some Aspects of the Formation of the Solar System. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17831-8_3

Download citation

Publish with us

Policies and ethics