Skip to main content

Evasion of Cytotoxic Lymphocyte and Pulmonary Macrophage-Mediated Immune Responses in Lung Cancer

  • Chapter
  • 845 Accesses

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 7))

Abstract

Lung cancer is responsible for more cancer-related deaths than colon, breast and prostate cancers combined. Survival rates for lung cancer are generally lower than those for most cancers, with an overall 5-year survival rate for lung cancer of about 16 % compared to 65 % for colon cancer, 89 % for breast cancer, and over 99 % for prostate cancer. Lung cancer comprises several types with varying response to therapy and survival rates; although they can be broadly grouped into small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC). NSCLC includes squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. SCLC accounts for approximately 20 % of all primary lung cancers and in general and tends to be more aggressive; some studies suggest that 60–70 % of patients with small cell lung cancer have evidence of distant spread at the time of initial diagnosis; treatment usually is limited to chemotherapy and/or radiation therapy. By contrast, surgical resection for NSLC may be an option.

COPD/emphysema is a highly prevalent airways disease that arises as a result of noxious injury to the lungs. Cigarette smoke plays a significant role in the aetiology of both COPD and lung cancer. Both smokers and COPD patients have an increased risk of developing lung cancer; however, there is an increased risk of developing lung cancer in smokers with COPD far above that of smokers without COPD. The carcinogenic effects of tobacco smoke have been well-described with over 80 % of lung cancer cases occurring in smokers or ex-smokers. The burden of COPD and the associated prevalence of COPD-associated lung cancer are projected to increase in the coming decades due to continued exposure to COPD risk factors and the changing age structure of the world’s population. Despite these alarming statistics, it is unknown why many lung cancers are relatively resistant to conventional therapies.

The authors have no potential conflicts of interest to disclose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

Arachidonic acid

COPD:

Chronic obstructive pulmonary disease

COX:

Cyclooxygenase-2

CTL:

Cytotoxic T-cells

EP1–4:

E-prostanoid 2 receptor 1–4

IFN:

Interferon

IL-:

Interleukin

LC-ESI-MSMS:

High performance liquid chromatography—electrospray tandem mass spectrometry

NK cells:

Natural killer cells

NSCLC:

Non small cell lung cancer

PGE2:

Eicosanoid prostaglandin E2

PI-9:

Proteinase inhibitor 9

SCLC:

Small cell lung cancer

TGF:

Transforming growth factor

TNF:

Tumour necrosis factor

Tregs:

Regulatory T lymphocytes

References

  1. The global burden of disease: Updated projections. In. Geneva: Health statistics and informatics Department, World Health Organisation 2004.

    Google Scholar 

  2. Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest. 2003;123(1 Suppl):21S–49.

    Article  PubMed  Google Scholar 

  3. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;35:1367–80.

    Article  Google Scholar 

  4. Ries LAG, Young YJ, Keel GE, Eisner MP, Lin YD, Horner MJ. National Cancer Institute SP: SEER Survival Monograph: Cancer Survival among Adults: U.S. SEER Program, 1988-2001, Patient and Tumor Characteristics. Bethesda 2007.

    Google Scholar 

  5. Mannino DM, Aguayo SM, Petty TL, Redd SC. Low lung function and incident lung cancer in the United States: data From the First National Health and Nutrition Examination Survey follow-up. Arch Intern Med. 2003;163:1475–80.

    Article  PubMed  Google Scholar 

  6. Brody JS, Spira A. State of the art. Chronic obstructive pulmonary disease, inflammation, and lung cancer. Proc Am Thorac Soc. 2006;3:535–7.

    Article  CAS  PubMed  Google Scholar 

  7. Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods. 2008;44:205–21.

    Article  CAS  PubMed  Google Scholar 

  8. Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol. 2003;3:361–70.

    Article  CAS  PubMed  Google Scholar 

  9. Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R, Lascurain R. Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol. 2009;6:15–25.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000;6:513–9.

    Article  CAS  PubMed  Google Scholar 

  11. Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. 1994;76:977–87.

    Article  CAS  PubMed  Google Scholar 

  12. Bladergroen BA, Strik MCM, Wolbink AM, Wouters D, Broekhuizen R, Kummer JA, Hack CE. The granzyme B inhibitor proteinase inhibitor (PI9) is expressed by human mast cells. Eur J Immunol. 2005;35:1175–83.

    Article  CAS  PubMed  Google Scholar 

  13. Buzza MS, Hirst CE, Bird CH, Hosking P, McKendrick J, Bird PI. The granzyme B inhibitor, PI-9, is present in endothelial and mesothelial cells, suggesting that it protects bystander cells during immune responses. Cell Immunol. 2010;2001:21–9.

    Google Scholar 

  14. Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci U S A. 2001;98:11515–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bladergroen BA, Meijer CJ, ten Berge RL, Hack CE, Muris JJ, Dukers DF, Chott A, Kazama Y, Oudejans JJ, van Berkum O, et al. Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system? Blood. 2002;99:232–7.

    Article  CAS  PubMed  Google Scholar 

  16. van Houdt IS, Oudejans JJ, van den Eertwegh AJ, Baars A, Vos W, Bladergroen BA, Rimoldi D, Muris JJ, Hooijberg E, Gundy CM, et al. Expression of the apoptosis inhibitor protease inhibitor 9 predicts clinical outcome in vaccinated patients with stage III and IV melanoma. Clin Cancer Res. 2005;11:6400–7.

    Article  PubMed  Google Scholar 

  17. ten Berge RL, Meijer CJ, Dukers DF, Kummer JA, Bladergroen BA, Vos W, Hack CE, Ossenkoppele GJ, Oudejans JJ. Expression levels of apoptosis-related proteins predict clinical outcome in anaplastic large cell lymphoma. Blood. 2002;99:4540–6.

    Article  PubMed  Google Scholar 

  18. Rousalova I, Krepela E, Prochazka J, Cermak J, Benkova K. Expression of proteinase inhibitor-9/serpinB9 in non-small cell lung carcinoma cells and tissues. Int J Oncol. 2010;36:275–83.

    CAS  PubMed  Google Scholar 

  19. Bossard C, Belhadj K, Reyes F, Martin-Garcia N, Berger F, Kummer JA, Brière J, Baglin AC, Cheze S, Bosq J, Ribrag V, Gisselbrecht C, Mounier N, Gaulard P. Expression of the granzyme B inhibitor PI9 predicts outcome in nasal NK/T-cell lymphoma: results of a Western series of 48 patients treated with first-line polychemotherapy within the Groupe d'Etude des Lymphomes de l'Adulte (GELA) trials. Blood. 2007;109:2183–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cunningham TD, Jiang X, Shapiro DJ. Expression of high levels of human proteinase inhibitor 9 blocks both perforin/granzyme and Fas/Fas ligand-mediated cytotoxicity. Cell Immunol. 2007;245:32–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Milano F, Jorritsma T, Rygiel AM, Bergman JJ, Sondermeijer C, Ten Brinke A, van Ham SM, Krishnadath KK. Expression pattern of immune suppressive cytokines and growth factors in oesophageal adenocarcinoma reveal a tumour immune escape-promoting microenvironment. Scand J Immunol. 2008;68:616–23.

    Article  CAS  PubMed  Google Scholar 

  22. Okano H, Shiraki K, Inoue H, Kawakita T, Yamanaka T, Deguchi M, Sugimoto K, Sakai T, Ohmori S, Fujikawa K, Murata K, Nakano T. Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma. Lab Invest. 2003;83:1033–43.

    Article  CAS  PubMed  Google Scholar 

  23. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schröter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997;386:517–21.

    Article  CAS  PubMed  Google Scholar 

  24. Ryu BK, Lee MG, Chi SG, Kim YW, Park JH. Increased expression of cFLIP(L) in colonic adenocarcinoma. J Pathol. 2001;194:15–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hodge S, Hodge G, Nairn J, et al. Increased airway granzyme b and perforin in current and ex-smoking COPD subjects. COPD. 2006;3:179–87.

    Article  PubMed  Google Scholar 

  26. Soriano C, Mukaro V, Hodge G, Ahern J, Holmes M, Jersmann H, Moffat D, Meredith D, Jurisevic C, Reynolds P, Hodge S. Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion? Lung Cancer. 2012;77:38–45.

    Article  PubMed  Google Scholar 

  27. Kim GG, Donnenberg VS, Donnenberg AD, Gooding W, Whiteside TL. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay. J Immunol Methods. 2007;325:51–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hodge GL, Hodge S, Liew CL, Reynolds PN, Holmes M. Increased NKT-like cells are a major source of pro-inflammatory cytokines and granzymes in lung transplant patients. Respirology. 2012;17:155–63.

    Article  PubMed  Google Scholar 

  29. Hodge G, Barnawi J, Jurisevic C, Moffat D, Holmes M, Reynolds PN, Jersmann H, Hodge S. Lung cancer is associated with decreased expression of perforin, granzyme B and IFNγ by infiltrating lung tissue T cells, NKT-like and NK cells. Clin Exp Immunol. 2014;178(1):79–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Dehle F, Mukaro V, Jurisevic C, Moffat D, Meredith D, Holmes M, Hodge G, Jersmann H, Reynolds PN, Hodge S. Defective efferocytosis in patients with lung cancer with or without COPD- mediated by PGE2 produced by lung cancer cells? PLoS One. 2013;26:0061573.

    Article  Google Scholar 

  31. Hodge S, Hodge G, Flower R, et al. Alveolar macrophages from subjects with COPD are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol. 2003;81:289–96.

    Article  PubMed  Google Scholar 

  32. Hodge S, Hodge G, Ahern J, et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in COPD. Am J Respir Crit Care Med. 2008;178:139–48.

    Article  CAS  PubMed  Google Scholar 

  33. Hodge S, Hodge G, Ahern J, et al. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2007;37:748–55.

    Article  CAS  PubMed  Google Scholar 

  34. Taskinen M, Karjalainen-Lindsberg ML, Nyman H, Eerola LM, Leppa S. A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamidedoxorubicin-vincristine-prednisone. Clin Cancer Res. 2007;13:5784–9.

    Article  CAS  PubMed  Google Scholar 

  35. Canioni D, Salles G, Mournier N, et al. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol. 2008;26:440–6.

    Article  CAS  PubMed  Google Scholar 

  36. Hodge S, Hodge G, Holmes M, et al. Increased apoptosis in the airways in COPD persists after smoking cessation. Eur Respir J. 2005;25:447–54.

    Article  CAS  PubMed  Google Scholar 

  37. Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest. 2006;129:1673–82.

    Article  PubMed  Google Scholar 

  38. Kim R, Emi M, Tanabe K. Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology. 2006;119:254–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tuve S, Chen BM, Liu Y, Cheng TL, Toure P, Sow PS, Feng Q, Kiviat N, Strauss R, Ni S, et al. Combination of tumor site-located CTL-associated antigen-4 blockade and systemic regulatory T-cell depletion induces tumor destructive immune responses. Cancer Res. 2007;67:5929–39.

    Article  CAS  PubMed  Google Scholar 

  40. Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest. 2006;116:1935–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH, Levine BL, Riddle M, June CH, Vallera DA, Weigel BJ, Blazar BR. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood. 2009;114:3793–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Jarnicki AG, Lysaght J, Todryk S, Mills KH. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4 and CD8 regulatory T cells. J Immunol. 2006;177:896–904.

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, Du Y, Huang Z. CD4 + CD25+ Treg derived from hepatocellular carcinoma mice inhibits tumor immunity. Immunol Lett. 2012;148:83–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, Ying H, Wang S, Gu X, Weng Y, Peng W, Xia D, Yu W. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 2014. doi:10.1111/crj.12147 [Epub ahead of print].

  45. Wang H, Peng W, Weng Y, Ying H, Li H, Xia D, Yu W. Imbalance of Th17/Treg cells in mice with chronic cigarette smoke exposure. Int Immunopharmacol. 2012;14:504–12.

    Article  CAS  PubMed  Google Scholar 

  46. Kalathil SG, Lugade AA, Pradhan V, Miller A, Parameswaran GI, Sethi S, Thanavala Y. T regulatory cells and PD-1+ T cells contribute to effector T cell dysfunction in COPD patients. Am J Respir Crit Care Med. 2014;190:40–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, Moghaddam SJ, Dong C. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci U S A. 2014;111:5664–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pouniotis DS, Plebanski M, Apostolopoulos V, et al. Alveolar macrophage function is altered in patients with lung cancer. Clin Exp Immunol. 2006;143:363–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Watkins DN, Peroni DJ, Lenzo JC, Knight DA, Garlepp MJ, Thompson PJ. Expression and localization of COX-2 in human airways and cultured airway epithelial cells. Eur Respir J. 1999;13:999–1007.

    Article  CAS  PubMed  Google Scholar 

  50. Aronoff DM, Canetti C, Peters-Golden M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol. 2004;173:559–65.

    Article  CAS  PubMed  Google Scholar 

  51. Izzi V, Chiurchiu V, D'Aquilio F, Palumbo C, Tresoldi I, Modesti A, Baldini PM. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages. Int J Oncol. 2009;34:543–50.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the expert contributions by Jessica Ahern, Geoffrey Matthews, Cyd Soriano, Frances Dehle, Paul N Reynolds, Hubertus Jersmann and Mark Holmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Hodge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hodge, S., Hodge, G. (2015). Evasion of Cytotoxic Lymphocyte and Pulmonary Macrophage-Mediated Immune Responses in Lung Cancer. In: Bonavida, B., Chouaib, S. (eds) Resistance of Cancer Cells to CTL-Mediated Immunotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-17807-3_8

Download citation

Publish with us

Policies and ethics