Skip to main content

Integrins: Friends or Foes of Antitumor Cytotoxic T Lymphocyte Response

  • Chapter
Resistance of Cancer Cells to CTL-Mediated Immunotherapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 7))

  • 862 Accesses

Abstract

Elimination of cancer cells by the immune system requires the induction of a strong and durable antitumor cytotoxic T lymphocyte (CTL) response. Immunotherapy approaches aim at generating tumor-specific CTL capable of migrating to the tumor site and at optimizing their functional activities toward target cells. Unfortunately, clinical trials indicate that despite an increase in the frequency and reactivity of antitumor CD8+ T lymphocytes, the efficacy of current immunotherapeutic strategies remains limited and rarely resulted in the eradication of malignant cells. Integrins and their ligands play critical roles in regulating T-cell effector functions, including adhesion to antigen presenting cells (APC), costimulation, migration to lymphoid organs and inflammatory sites, and extravasation. Although some of those are known to promote tumor cell proliferation and dissemination, others are required for T-lymphocyte homing and retention within the tumor microenvironment and for CTL activation and triggering of cytotoxic activity within a hostile ecosystem. In this chapter, we will briefly summarize findings involving integrins, in particular CD103 (αE7) and LFA-1 (αL2), and their respective ligands, E-cadherin and intercellular adhesion molecule 1 (ICAM-1), in regulating the effector phase of the antitumor T-cell response and we provide insights into the potential implication of their altered expression in tumor resistance to CTL-mediated cancer immunotherapy. The characterization of integrin-dependent pathways involved in the potentiation of antitumor CTL functions may lead to enhanced immune protection and improved cancer immunotherapy.

No conflict statement: No potential conflicts of interest were disclosed.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-319-17807-3_15

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-17807-3_15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

CAF:

Cancer-associated fibroblasts

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal-transition

ICAM:

Intercellular adhesion molecule

IS:

Immune synapse

LFA:

Leukocyte function-associated antigen

mAb:

Monoclonal antibody

MTOC:

Microtubule-organizing center

pMHC-I:

Peptide-major histocompatibility complex class I

TAA:

Tumor-associated antigen

TCR:

T-cell receptor

TGF:

Transforming growth factor.

References

  1. Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014;257:56–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Boon T. Tumor antigens recognized by cytolytic T lymphocytes: present perspectives for specific immunotherapy. Int J Cancer. 1993;54:177–80.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4:321–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Limacher JM, Spring-Giusti C, Bellon N, Ancian P, Rooke R, Bonnefoy JY. Therapeutic cancer vaccines in the treatment of non-small-cell lung cancer. Expert Rev Vaccines. 2013;12:263–70.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Germeau C, Ma W, Schiavetti F, Lurquin C, Henry E, Vigneron N, Brasseur F, Lethe B, De Plaen E, Velu T, Boon T, Coulie PG. High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med. 2005;201:241–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N, Coulie PG, Boon T. Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med. 2005;201:249–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D, Robinson BW, Nelson DJ. IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol. 2003;171:5051–63.

    Article  CAS  PubMed  Google Scholar 

  9. Khawli LA, Hu P, Epstein AL. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors. Handb Exp Pharmacol. 2008;181:291–328.

    Article  CAS  PubMed  Google Scholar 

  10. Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  Google Scholar 

  12. Simeone E, Ascierto PA. Immunomodulating antibodies in the treatment of metastatic melanoma: the experience with anti-CTLA-4, anti-CD137, and anti-PD1. J Immunotoxicol. 2012;9:241–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Champiat S, Ileana E, Giaccone G, Besse B, Mountzios G, Eggermont A, Soria JC. Incorporating immune-checkpoint inhibitors into systemic therapy of NSCLC. J Thorac Oncol. 2014;9:144–53.

    Article  CAS  PubMed  Google Scholar 

  15. Aerts JG, Hegmans JP. Tumor-specific cytotoxic T cells are crucial for efficacy of immunomodulatory antibodies in patients with lung cancer. Cancer Res. 2013;73:2381–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gajewski TF, Meng Y, Harlin H. Immune suppression in the tumor microenvironment. J Immunother. 2006;29:233–40.

    Article  CAS  PubMed  Google Scholar 

  17. Gajewski TF, Woo SR, Zha Y, Spaapen R, Zheng Y, Corrales L, Spranger S. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol. 2013;25:268–76.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8:369–80.

    Article  CAS  PubMed  Google Scholar 

  19. Einstein MH, Leanza S, Chiu LG, Schlecht NF, Goldberg GL, Steinberg BM, Burk RD. Genetic variants in TAP are associated with high-grade cervical neoplasia. Clin Cancer Res. 2009;15:1019–23.

    Article  CAS  PubMed  Google Scholar 

  20. Leibowitz MS, Andrade Filho PA, Ferrone S, Ferris RL. Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes. Cancer Immunol Immunother. 2011;60:525–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Durgeau A, El Hage F, Vergnon I, Validire P, de Montpreville V, Besse B, Soria JC, van Hall T, Mami-Chouaib F. Different expression levels of the TAP peptide transporter lead to recognition of different antigenic peptides by tumor-specific CTL. J Immunol. 2011;187:5532–9.

    Article  CAS  PubMed  Google Scholar 

  22. Franciszkiewicz K, Boissonnas A, Boutet M, Combadiere C, Mami-Chouaib F. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 2012;72:6325–32.

    Article  CAS  PubMed  Google Scholar 

  23. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122:899–910.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Franciszkiewicz K, Le Floc'h A, Boutet M, Vergnon I, Schmitt A, Mami-Chouaib F. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res. 2013;73:617–28.

    Article  CAS  PubMed  Google Scholar 

  25. Le Floc'h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G, Chouaib S, Mami-Chouaib F. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J Exp Med. 2007;204:559–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Le Floc'h A, Jalil A, Franciszkiewicz K, Validire P, Vergnon I, Mami-Chouaib F. Minimal engagement of CD103 on cytotoxic T lymphocytes with an E-cadherin-Fc molecule triggers lytic granule polarization via a phospholipase Cgamma-dependent pathway. Cancer Res. 2011;71:328–38.

    Article  PubMed  CAS  Google Scholar 

  27. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Denucci CC, Mitchell JS, Shimizu Y. Integrin function in T-cell homing to lymphoid and nonlymphoid sites: getting there and staying there. Crit Rev Immunol. 2009;29:87–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.

    Article  CAS  PubMed  Google Scholar 

  31. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8:215.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC, Laudanna C. Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity. 2000;13:759–69.

    Article  CAS  PubMed  Google Scholar 

  33. Laudanna C, Alon R. Right on the spot. Chemokine triggering of integrin-mediated arrest of rolling leukocytes. Thromb Haemost. 2006;95:5–11.

    CAS  PubMed  Google Scholar 

  34. Anikeeva N, Somersalo K, Sims TN, Thomas VK, Dustin ML, Sykulev Y. Distinct role of lymphocyte function-associated antigen-1 in mediating effective cytolytic activity by cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 2005;102:6437–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol. 2009;27:339–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Goda S, Quale AC, Woods ML, Felthauser A, Shimizu Y. Control of TCR-mediated activation of beta 1 integrins by the ZAP-70 tyrosine kinase interdomain B region and the linker for activation of T cells adapter protein. J Immunol. 2004;172:5379–87.

    Article  CAS  PubMed  Google Scholar 

  37. Laudanna C, Kim JY, Constantin G, Butcher E. Rapid leukocyte integrin activation by chemokines. Immunol Rev. 2002;186:37–46.

    Article  CAS  PubMed  Google Scholar 

  38. Parmo-Cabanas M, Garcia-Bernal D, Garcia-Verdugo R, Kremer L, Marquez G, Teixido J. Intracellular signaling required for CCL25-stimulated T cell adhesion mediated by the integrin alpha4beta1. J Leukoc Biol. 2007;82:380–91.

    Article  CAS  PubMed  Google Scholar 

  39. Kilshaw PJ, Murant SJ. A new surface antigen on intraepithelial lymphocytes in the intestine. Eur J Immunol. 1990;20:2201–7.

    Article  CAS  PubMed  Google Scholar 

  40. Cerf-Bensussan N, Begue B, Gagnon J, Meo T. The human intraepithelial lymphocyte marker HML-1 is an integrin consisting of a beta 7 subunit associated with a distinctive alpha chain. Eur J Immunol. 1992;22:885.

    Article  CAS  PubMed  Google Scholar 

  41. Roberts K, Kilshaw PJ. The mucosal T cell integrin alpha M290 beta 7 recognizes a ligand on mucosal epithelial cell lines. Eur J Immunol. 1993;23:1630–5.

    Article  CAS  PubMed  Google Scholar 

  42. Higgins JM, Mandlebrot DA, Shaw SK, Russell GJ, Murphy EA, Chen YT, Nelson WJ, Parker CM, Brenner MB. Direct and regulated interaction of integrin alphaEbeta7 with E-cadherin. J Cell Biol. 1998;140:197–210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Schon MP, Arya A, Murphy EA, Adams CM, Strauch UG, Agace WW, Marsal J, Donohue JP, Her H, Beier DR, Olson S, Lefrançois L, Brenner MB, Grusby MJ, Parker CM. Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice. J Immunol. 1999;162:6641–9.

    CAS  PubMed  Google Scholar 

  44. Sung SS, Fu SM, Rose Jr CE, Gaskin F, Ju ST, Beaty SR. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol. 2006;176:2161–72.

    Article  CAS  PubMed  Google Scholar 

  45. Annacker O, Coombes JL, Malmstrom V, Uhlig HH, Bourne T, Johansson-Lindbom B, Agace WW, Parker CM, Powrie F. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med. 2005;202:1051–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol. 2009;10:1237–44.

    Article  CAS  PubMed  Google Scholar 

  47. Li L, Kim S, Herndon JM, Goedegebuure P, Belt BA, Satpathy AT, Fleming TP, Hansen TH, Murphy KM, Gillanders WE. Cross-dressed CD8alpha+/CD103+ dendritic cells prime CD8+ T cells following vaccination. Proc Natl Acad Sci U S A. 2012;109:12716–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, Allan RS, Wojtasiak M, Shortman K, Carbone FR, Brooks AG, Heath WR. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol. 2009;10:488–95.

    Article  CAS  PubMed  Google Scholar 

  49. Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, Agace WW. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med. 2008;205:2139–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204:1757–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Suffia I, Reckling SK, Salay G, Belkaid Y. A role for CD103 in the retention of CD4 + CD25+ Treg and control of Leishmania major infection. J Immunol. 2005;174:5444–55.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao D, Zhang C, Yi T, Lin CL, Todorov I, Kandeel F, Forman S, Zeng D. In vivo-activated CD103 + CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood. 2008;112:2129–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Sheridan BS, Lefrancois L. Regional and mucosal memory T cells. Nat Immunol. 2011;12:485–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature. 2012;483:227–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhang N, Bevan MJ. Transforming growth factor-beta signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity. 2013;39:687–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, Brenner MB. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature. 1994;372:190–3.

    Article  CAS  PubMed  Google Scholar 

  57. Sarnacki S, Begue B, Buc H, Le Deist F, Cerf-Bensussan N. Enhancement of CD3-induced activation of human intestinal intraepithelial lymphocytes by stimulation of the beta 7-containing integrin defined by HML-1 monoclonal antibody. Eur J Immunol. 1992;22:2887–92.

    Article  CAS  PubMed  Google Scholar 

  58. Hadley GA, Bartlett ST, Via CS, Rostapshova EA, Moainie S. The epithelial cell-specific integrin, CD103 (alpha E integrin), defines a novel subset of alloreactive CD8+ CTL. J Immunol. 1997;159:3748–56.

    CAS  PubMed  Google Scholar 

  59. Schlickum S, Sennefelder H, Friedrich M, Harms G, Lohse MJ, Kilshaw P, Schon MP. Integrin alpha E(CD103)beta 7 influences cellular shape and motility in a ligand-dependent fashion. Blood. 2008;112:619–25.

    Article  CAS  PubMed  Google Scholar 

  60. El-Asady R, Yuan R, Liu K, Wang D, Gress RE, Lucas PJ, Drachenberg CB, Hadley GA. TGF-{beta}-dependent CD103 expression by CD8(+) T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J Exp Med. 2005;201:1647–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Liu K, Anthony BA, Yearsly MM, Hamadani M, Gaughan A, Wang JJ, Devine SM, Hadley GA. CD103 deficiency prevents graft-versus-host disease but spares graft-versus-tumor effects mediated by alloreactive CD8 T cells. PLoS One. 2011;6:e21968.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hadley GA, Charandee C, Weir MR, Wang D, Bartlett ST, Drachenberg CB. CD103+ CTL accumulate within the graft epithelium during clinical renal allograft rejection. Transplantation. 2001;72:1548–55.

    Article  CAS  PubMed  Google Scholar 

  63. Feng Y, Wang D, Yuan R, Parker CM, Farber DL, Hadley GA. CD103 expression is required for destruction of pancreatic islet allografts by CD8(+) T cells. J Exp Med. 2002;196:877–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Yuan R, El-Asady R, Liu K, Wang D, Drachenberg CB, Hadley GA. Critical role for CD103 + CD8+ effectors in promoting tubular injury following allogeneic renal transplantation. J Immunol. 2005;175:2868–79.

    Article  CAS  PubMed  Google Scholar 

  65. Oshitani N, Watanabe K, Maeda K, Fujiwara Y, Higuchi K, Matsumoto T, Arakawa T. Differential expression of homing receptor CD103 on lamina propria lymphocytes and association of CD103 with epithelial adhesion molecules in inflammatory bowel disease. Int J Mol Med. 2003;12:715–9.

    CAS  PubMed  Google Scholar 

  66. Cresswell J, Wong WK, Henry MJ, Robertson H, Neal DE, Kirby JA. Adhesion of lymphocytes to bladder cancer cells: the role of the alpha(E)beta(7) integrin. Cancer Immunol Immunother. 2002;51:483–91.

    Article  CAS  PubMed  Google Scholar 

  67. Quinn E, Hawkins N, Yip YL, Suter C, Ward R. CD103+ intraepithelial lymphocytes—a unique population in microsatellite unstable sporadic colorectal cancer. Eur J Cancer. 2003;39:469–75.

    Article  CAS  PubMed  Google Scholar 

  68. French JJ, Cresswell J, Wong WK, Seymour K, Charnley RM, Kirby JA. T cell adhesion and cytolysis of pancreatic cancer cells: a role for E-cadherin in immunotherapy? Br J Cancer. 2002;87:1034–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mokrani M, Klibi J, Bluteau D, Bismuth G, Mami-Chouaib F. Smad and NFAT pathways cooperate to induce CD103 expression in human CD8 T lymphocytes. J Immunol. 2014;192:2471–9.

    Article  CAS  PubMed  Google Scholar 

  70. Franciszkiewicz K, Le Floc'h A, Jalil A, Vigant F, Robert T, Vergnon I, Mackiewicz A, Benihoud K, Validire P, Chouaib S, Combadière C, Mami-Chouaib F. Intratumoral induction of CD103 triggers tumor-specific CTL function and CCR5-dependent T-cell retention. Cancer Res. 2009;69:6249–55.

    Article  CAS  PubMed  Google Scholar 

  71. Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007;1775:163–80.

    CAS  PubMed  Google Scholar 

  72. Vogetseder A, Thies S, Ingold B, Roth P, Weller M, Schraml P, Goodman SL, Moch H. Alphav-integrin isoform expression in primary human tumors and brain metastases. Int J Cancer. 2013;133:2362–71.

    Article  CAS  PubMed  Google Scholar 

  73. McCabe NP, De S, Vasanji A, Brainard J, Byzova TV. Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene. 2007;26:6238–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Weis SM, Cheresh DA. AlphaV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med. 2011;1:a006478.

    Google Scholar 

  76. Slack-Davis JK, Atkins KA, Harrer C, Hershey ED, Conaway M. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res. 2009;69:1469–76.

    Article  CAS  PubMed  Google Scholar 

  77. Lorger M, Krueger JS, O'Neal M, Staflin K, Felding-Habermann B. Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci U S A. 2009;106:10666–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. De S, Razorenova O, McCabe NP, O'Toole T, Qin J, Byzova TV. VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci U S A. 2005;102:7589–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest. 1995;96:1815–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Drake CJ, Cheresh DA, Little CD. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci. 1995;108(Pt 7):2655–61.

    CAS  PubMed  Google Scholar 

  81. Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer. 2010;10:858–70.

    Article  CAS  PubMed  Google Scholar 

  82. Griffiths GS, Grundl M, Leychenko A, Reiter S, Young-Robbins SS, Sulzmaier FJ, Caliva MJ, Ramos JW, Matter ML. Bit-1 mediates integrin-dependent cell survival through activation of the NFkappaB pathway. J Biol Chem. 2011;286:14713–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene. 2001;20:4995–5004.

    Article  CAS  PubMed  Google Scholar 

  84. Matter ML, Ruoslahti E. A signaling pathway from the alpha5beta1 and alpha(v)beta3 integrins that elevates bcl-2 transcription. J Biol Chem. 2001;276:27757–63.

    Article  CAS  PubMed  Google Scholar 

  85. Uhm JH, Dooley NP, Kyritsis AP, Rao JS, Gladson CL. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res. 1999;5:1587–94.

    CAS  PubMed  Google Scholar 

  86. Bates RC. The alphaVbeta6 integrin as a novel molecular target for colorectal cancer. Future Oncol. 2005;1:821–8.

    Article  CAS  PubMed  Google Scholar 

  87. Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, Weinreb PH, Fleuren GJ. Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol. 2007;212:316–24.

    Article  CAS  PubMed  Google Scholar 

  88. Jin H, Su J, Garmy-Susini B, Kleeman J, Varner J. Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 2006;66:2146–52.

    Article  CAS  PubMed  Google Scholar 

  89. Ota D, Kanayama M, Matsui Y, Ito K, Maeda N, Kutomi G, Hirata K, Torigoe T, Sato N, Takaoka A, Chambers AF, Morimoto J, Uede T. Tumor-alpha9beta1 integrin-mediated signaling induces breast cancer growth and lymphatic metastasis via the recruitment of cancer-associated fibroblasts. J Mol Med. 2014;92:1271–81.

    Article  CAS  PubMed  Google Scholar 

  90. Stinchcombe JC, Bossi G, Booth S, Griffiths GM. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity. 2001;15:751–61.

    Article  CAS  PubMed  Google Scholar 

  91. Stinchcombe JC, Griffiths GM. Secretory mechanisms in cell-mediated cytotoxicity. Annu Rev Cell Dev Biol. 2007;23:495–517.

    Article  CAS  PubMed  Google Scholar 

  92. Griffiths GM, Tsun A, Stinchcombe JC. The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol. 2010;189:399–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443:462–5.

    Article  CAS  PubMed  Google Scholar 

  94. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395:82–6.

    Article  CAS  PubMed  Google Scholar 

  95. Huppa JB, Davis MM. T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol. 2003;3:973–83.

    Article  CAS  PubMed  Google Scholar 

  96. Kuhn JR, Poenie M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity. 2002;16:111–21.

    Article  CAS  PubMed  Google Scholar 

  97. Jenkinson SR, Williams NA, Morgan DJ. The role of intercellular adhesion molecule-1/LFA-1 interactions in the generation of tumor-specific CD8+ T cell responses. J Immunol. 2005;174:3401–7.

    Article  CAS  PubMed  Google Scholar 

  98. Yasuda M, Tanaka Y, Tamura M, Fujii K, Sugaya M, So T, Takenoyama M, Yasumoto K. Stimulation of beta1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase. Cancer Res. 2001;61:2022–30.

    CAS  PubMed  Google Scholar 

  99. Lebedeva T, Dustin ML, Sykulev Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol. 2005;17:251–8.

    Article  CAS  PubMed  Google Scholar 

  100. Sartor WM, Kyprianou N, Fabian DF, Lefor AT. Enhanced expression of ICAM-1 in a murine fibrosarcoma reduces tumor growth rate. J Surg Res. 1995;59:66–74.

    Article  CAS  PubMed  Google Scholar 

  101. Turner J, Rhee JG, Fabian DF, Lefor AT. Expression of ICAM-1 enhances in vivo lymphocyte adhesion in a murine fibrosarcoma. J Surg Oncol. 1997;66:39–44.

    Article  CAS  PubMed  Google Scholar 

  102. Schmits R, Kundig TM, Baker DM, Shumaker G, Simard JJ, Duncan G, Wakeham A, Shahinian A, van der Heiden A, Bachmann MF, Ohashi PS, Mak TW, Hickstein DD. LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J Exp Med. 1996;183:1415–26.

    Article  CAS  PubMed  Google Scholar 

  103. Hamai A, Benlalam H, Meslin F, Hasmim M, Carre T, Akalay I, Janji B, Berchem G, Noman MZ, Chouaib S. Immune surveillance of human cancer: if the cytotoxic T-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens. 2010;75:1–8.

    Article  CAS  PubMed  Google Scholar 

  104. Hareyama M, Imai K, Oouchi A, Takahashi H, Hinoda Y, Tsujisaki M, Adachi M, Shonai T, Sakata K, Morita K. The effect of radiation on the expression of intercellular adhesion molecule-1 of human adenocarcinoma cells. Int J Radiat Oncol Biol Phys. 1998;40:691–6.

    Article  CAS  PubMed  Google Scholar 

  105. Corps E, Carter C, Karecla P, Ahrens T, Evans P, Kilshaw P. Recognition of E-cadherin by integrin alpha(E)beta(7): requirement for cadherin dimerization and implications for cadherin and integrin function. J Biol Chem. 2001;276:30862–70.

    Article  CAS  PubMed  Google Scholar 

  106. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–85.

    Article  CAS  PubMed  Google Scholar 

  107. Vleminckx K, Vakaet Jr L, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–19.

    Article  CAS  PubMed  Google Scholar 

  108. Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, van Roy F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995;14:6107–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Kilshaw PJ, Higgins JM. Alpha E: no more rejection? J Exp Med. 2002;196:873–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Kilshaw PJ, Karecla P. Structure and function of the mucosal T-cell integrin alpha E beta 7. Biochem Soc Trans. 1997;25:433–9.

    Article  CAS  PubMed  Google Scholar 

  111. Tiwari N, Gheldof A, Tatari M, Christofori G. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194–207.

    Article  CAS  PubMed  Google Scholar 

  112. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  CAS  PubMed  Google Scholar 

  113. Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.

    Article  CAS  PubMed  Google Scholar 

  114. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  115. Koenig A, Mueller C, Hasel C, Adler G, Menke A. Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res. 2006;66:4662–71.

    Article  CAS  PubMed  Google Scholar 

  116. Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013;126:393–401.

    Article  CAS  PubMed  Google Scholar 

  117. Matsui Y, Assi K, Ogawa O, Raven PA, Dedhar S, Gleave ME, Salh B, So AI. The importance of integrin-linked kinase in the regulation of bladder cancer invasion. Int J Cancer. 2012;130:521–31.

    Article  CAS  PubMed  Google Scholar 

  118. Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol. 2007;9:1000–4.

    Article  CAS  PubMed  Google Scholar 

  119. Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E. Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell. 2007;12:313–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Horiguchi M, Ota M, Rifkin DB. Matrix control of transforming growth factor-beta function. J Biochem. 2012;152:321–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Worthington JJ, Fenton TM, Czajkowska BI, Klementowicz JE, Travis MA. Regulation of TGFbeta in the immune system: an emerging role for integrins and dendritic cells. Immunobiology. 2012;217:1259–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, Pellicoro A, Raschperger E, Betsholtz C, Ruminski PG, Griggs DW, Prinsen MJ, Maher JJ, Iredale JP, Lacy-Hulbert A, Adams RH, Sheppard D. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19:1617–24.

    Article  CAS  PubMed  Google Scholar 

  123. Sela U, Mauermann N, Hershkoviz R, Zinger H, Dayan M, Cahalon L, Liu JP, Mozes E, Lider O. The inhibition of autoreactive T cell functions by a peptide based on the CDR1 of an anti-DNA autoantibody is via TGF-beta-mediated suppression of LFA-1 and CD44 expression and function. J Immunol. 2005;175:7255–63.

    Article  CAS  PubMed  Google Scholar 

  124. Sawada T, Kimura K, Nishihara T, Onoda N, Teraoka H, Yamashita Y, Yamada N, Yashiro M, Ohira M, Hirakawa K. TGF-beta1 down-regulates ICAM-1 expression and enhances liver metastasis of pancreatic cancer. Adv Med Sci. 2006;51:60–5.

    CAS  PubMed  Google Scholar 

  125. Gutheil JC, Campbell TN, Pierce PR, Watkins JD, Huse WD, Bodkin DJ, Cheresh DA. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res. 2000;6:3056–61.

    CAS  PubMed  Google Scholar 

  126. McNeel DG, Eickhoff J, Lee FT, King DM, Alberti D, Thomas JP, Friedl A, Kolesar J, Marnocha R, Volkman J, Zhang J, Hammershaimb L, Zwiebel JA, Wilding G. Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res. 2005;11:7851–60.

    Article  CAS  PubMed  Google Scholar 

  127. Hersey P, Sosman J, O'Day S, Richards J, Bedikian A, Gonzalez R, Sharfman W, Weber R, Logan T, Buzoianu M, Hammershaimb L, Kirkwood JM. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or − dacarbazine in patients with stage IV metastatic melanoma. Cancer. 2010;116:1526–34.

    Article  CAS  PubMed  Google Scholar 

  128. Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res. 2014;20:434–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the INSERM, the Institut National du Cancer (INCa), the Ligue contre le Cancer and the Fondation pour la Recherche Médicale (FRM).

MB is supported by a grant from Gustave Roussy (SIRIC SOCRATE) and SC is supported by a grant from the FRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathia Mami-Chouaib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boutet, M., Cognac, S., Mami-Chouaib, F. (2015). Integrins: Friends or Foes of Antitumor Cytotoxic T Lymphocyte Response. In: Bonavida, B., Chouaib, S. (eds) Resistance of Cancer Cells to CTL-Mediated Immunotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-17807-3_4

Download citation

Publish with us

Policies and ethics