Skip to main content

Epithelial Mesenchymal Transition Influence on CTL Activity

  • Chapter
Resistance of Cancer Cells to CTL-Mediated Immunotherapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 7))

  • 855 Accesses

Abstract

Epithelial-mesenchymal transition (EMT) is a fundamental process orchestrating embryonic morphogenesis that also operates during carcinoma progression to promote invasion and metastasis. This review critically assesses whether EMT confers stemness, resistance to chemo- and targeted therapeutics, and immune escape. EMT inducers share common targets that alter apico-basal polarity, intercellular adhesion and the actin cytoskeleton, events that also contribute to the transdifferentiation of epithelial into mesenchymal cells. The considerable genomic heterogeneity exhibited by tumors, concomitant with their rapidly evolving sub-clones, is a major caveat in the success of targeted therapeutics. With the recent spectacular progress in immunotherapy for some solid tumors, one can now envision expanding upon this strategy for other tumors, pending the improved efficacy of T lymphocyte-mediated cytotoxicity. This review explores how the immunological synapse can be affected by EMT and posits how EMT reversal by kinase inhibitors could help restore a functional immunological synapse, in cooperation with antibodies abrogating immune suppression.

No potential conflicts of interest were disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDH1:

Aldehyde dehydrogenase-1

APC:

Antigen presenting cell

CK1:

Casein kinase 1

cSMAC:

Central supra-molecular activation cluster

CT:

Computed tomography

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T lymphocyte associated protein 4

dSMAC:

Distal supramolecular activation cluster

EGF:

Epidermal growth factors

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal Transition

ERBB2:

Receptor tyrosine-protein kinase

FGF:

Fibroblast growth factor

GSK3b:

Glycogen synthase 1

HGF:

Hepatocyte growth factor

HMLE:

Human mammary epithelial cell line

h-TERT:

Human telomerase reverse transcriptase

ICAM-1:

Intercellular adhesion molecule-1

IGF:

Insulin-like growth factor

LFA-1:

Lymphocyte function associated antigen-1

MAPK:

Mitogen activated protein kinase

MCF7:

Epithelial mammary adenocarcinoma cell line

MHC:

Major histocompatibility antigen

miRNA:

MicroRNAs

MRI:

Magnetic resonance imaging

NSCLC:

Non-small cell lung cancer

PD-1:

Programmed death-1 protein

PD-1 L:

Programmed death-1 protein ligand

PET:

Positron emission tomography

PI3K:

phosphoinositide 3-kinase

pMHCs:

Peptide-bound major histocompatibility complex

PRC:

Polycomb repressor complex

pSMAC:

Peripheral supra-molecular activation cluster

SHP2:

Tyrosine-protein phosphatase non-receptor type 11

TCR:

T-cell surface receptors

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

Treg :

Regulatory T cell

WISP2:

Wnt1-inducible signaling pathway protein 2

ZAP70:

Zeta-chain-associated protein kinase 70

References

  1. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, Shlien A, Cooke SL, Hinton J, Menzies A, Stebbings LA, Leroy C, Jia M, Rance R, Mudie LJ, Gamble SJ, Stephens PJ, McLaren S, Tarpey PS, Papaemmanuil E, Davies HR, Varela I, McBride DJ, Bignell GR, Leung K, Butler AP, Teague JW, Martin S, Jonsson G, Mariani O, Boyault S, Miron P, Fatima A, Langerod A, Aparicio SA, Tutt A, Sieuwerts AM, Borg A, Thomas G, Salomon AV, Richardson AL, Borresen-Dale AL, Futreal PA, Stratton MR, Campbell PJ, Breast Cancer Working Group of the International Cancer Genome C. The life history of 21 breast cancers. Cell. 2012;149:994–1007.

    Google Scholar 

  2. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    Article  CAS  PubMed  Google Scholar 

  3. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14:1212–8.

    Article  CAS  PubMed  Google Scholar 

  4. Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet. 2014;383:816–27.

    Article  CAS  PubMed  Google Scholar 

  5. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gangadhar TC, Vonderheide RH. Mitigating the toxic effects of anticancer immunotherapy. Nat Rev Clin Oncol. 2014;11:91–9.

    Article  CAS  PubMed  Google Scholar 

  7. Noman MZ, Messai Y, Muret J, Hasmim M, Chouaib S. Crosstalk between CTC, immune system and hypoxic tumor microenvironment. Cancer Microenviron. 2014;7:153–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  9. Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development. 2012;139:3471–86.

    Article  CAS  PubMed  Google Scholar 

  10. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  CAS  PubMed  Google Scholar 

  11. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    Article  PubMed  Google Scholar 

  12. Huang RY, Guilford P, Thiery JP. Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci. 2012;125:4417–22.

    Article  CAS  PubMed  Google Scholar 

  13. Gumbiner BM, Kim NG. The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci. 2014;127:709–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005;307:1621–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.

    Article  CAS  PubMed  Google Scholar 

  16. Thiery JP, Huang R. Linking epithelial-mesenchymal transition to the well-known polarity protein Par6. Dev Cell. 2005;8:456–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26:54–68.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Thomason HA, Scothern A, McHarg S, Garrod DR. Desmosomes: adhesive strength and signalling in health and disease. Biochem J. 2010;429:419–33.

    Article  CAS  PubMed  Google Scholar 

  19. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3:e2888.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, Brooks M, Reinhardt F, Su Y, Polyak K, Arendt LM, Kuperwasser C, Bierie B, Weinberg RA. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A. 2011;108:7950–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zurrer-Hardi U, Bell G, Tam WL, Mani SA, van Oudenaarden A, Weinberg RA. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. 2012;148:1015–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, Hong S, Adams A, D'Angelo R, Ginestier C, Charafe-Jauffret E, Clouthier SG, Birnbaum D, Wong ST, Zhan M, Chang JC, Wicha MS. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014;2:78–91.

    Article  CAS  Google Scholar 

  24. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22:709–24.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 2012;8:999–1014.

    Article  CAS  PubMed  Google Scholar 

  27. Miow QH, Tan TZ, Ye J, Lau JA, Yokomizo T, Thiery JP, Mori S. Epithelial-mesenchymal status renders differential responses to cisplatin in ovarian cancer. Oncogene. 2015;34:1899–907. doi:10.1038/onc.2014.136.

    Article  CAS  PubMed  Google Scholar 

  28. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, Thiery JP. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 2014;6:1279–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15:195–206.

    Article  CAS  PubMed  Google Scholar 

  30. Akalay I, Janji B, Hasmim M, Noman MZ, Andre F, De Cremoux P, Bertheau P, Badoual C, Vielh P, Larsen AK, Sabbah M, Tan TZ, Keira JH, Hung NT, Thiery JP, Mami-Chouaib F, Chouaib S. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res. 2013;73:2418–27.

    Article  CAS  PubMed  Google Scholar 

  31. Akalay I, Tan TZ, Kumar P, Janji B, Mami-Chouaib F, Charpy C, Vielh P, Larsen AK, Thiery JP, Sabbah M, Chouaib S. Targeting WNT1-inducible signaling pathway protein 2 alters human breast cancer cell susceptibility to specific lysis through regulation of KLF-4 and miR-7 expression. Oncogene. 2014;0. doi: 10.1038/onc.2014.151.

    Google Scholar 

  32. Chouaib S, Janji B, Tittarelli A, Eggermont A, Thiery JP. Tumor plasticity interferes with anti-tumor immunity. Crit Rev Immunol. 2014;34:91–102.

    Article  CAS  PubMed  Google Scholar 

  33. Huang RY, Wong MK, Tan TZ, Kuay KT, Ng AH, Chung VY, Chu YS, Matsumura N, Lai HC, Lee YF, Sim WJ, Chai C, Pietschmann E, Mori S, Low JJ, Choolani M, Thiery JP. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 2013;4:e915.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97.

    Article  CAS  PubMed  Google Scholar 

  35. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Khoo BL, Lee SC, Kumar P, Tan TZ, Warkiani ME, Ow SG, Nandi S, Lim CT, Thiery JP. Expansion of breast circulating cancer cells predicts response to anti-cancer therapy. EMBO Mol Med. 2014 (in press).

    Google Scholar 

  37. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65:5278–83.

    Article  CAS  PubMed  Google Scholar 

  38. Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC, Kato M, Prevost-Blondel A, Thiery JP, Abastado JP. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol. 2011;9:e1001162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012;2:1091–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell. 2013;23:272–3.

    Article  CAS  PubMed  Google Scholar 

  41. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002;419:845–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kumari S, Curado S, Mayya V, Dustin ML. T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim Biophys Acta. 1838;2014:546–56.

    Google Scholar 

  43. Cyster JG, Shotton DM, Williams AF. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J. 1991;10:893–902.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Sage PT, Varghese LM, Martinelli R, Sciuto TE, Kamei M, Dvorak AM, Springer TA, Sharpe AH, Carman CV. Antigen recognition is facilitated by invadosome-like protrusions formed by memory/effector T cells. J Immunol. 2012;188:3686–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hogg N, Patzak I, Willenbrock F. The insider's guide to leukocyte integrin signalling and function. Nat Rev Immunol. 2011;11:416–26.

    Article  CAS  PubMed  Google Scholar 

  46. Campi G, Varma R, Dustin ML. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med. 2005;202:1031–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. 2006;25:117–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Cernuda-Morollon E, Millan J, Shipman M, Marelli-Berg FM, Ridley AJ. Rac activation by the T-cell receptor inhibits T cell migration. PLoS One. 2010;5:e12393.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Bhakta NR, Oh DY, Lewis RS. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol. 2005;6:143–51.

    Article  CAS  PubMed  Google Scholar 

  50. Skokos D, Shakhar G, Varma R, Waite JC, Cameron TO, Lindquist RL, Schwickert T, Nussenzweig MC, Dustin ML. Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nat Immunol. 2007;8:835–44.

    Article  CAS  PubMed  Google Scholar 

  51. Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS. T cell receptor signaling precedes immunological synapse formation. Science. 2002;295:1539–42.

    Article  CAS  PubMed  Google Scholar 

  52. Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity. 1998;8:89–95.

    Article  CAS  PubMed  Google Scholar 

  53. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209:1201–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443:462–5.

    Article  CAS  PubMed  Google Scholar 

  55. Stinchcombe JC, Salio M, Cerundolo V, Pende D, Arico M, Griffiths GM. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems. BMC Biol. 2011;9:45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ueda H, Morphew MK, McIntosh JR, Davis MM. CD4+ T-cell synapses involve multiple distinct stages. Proc Natl Acad Sci U S A. 2011;108:17099–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Martin-Cofreces NB, Baixauli F, Lopez MJ, Gil D, Monjas A, Alarcon B, Sanchez-Madrid F. End-binding protein 1 controls signal propagation from the T cell receptor. EMBO J. 2012;31:4140–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lasserre R, Cuche C, Blecher-Gonen R, Libman E, Biquand E, Danckaert A, Yablonski D, Alcover A, Di Bartolo V. Release of serine/threonine-phosphorylated adaptors from signaling microclusters down-regulates T cell activation. J Cell Biol. 2011;195:839–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Lasserre R, Charrin S, Cuche C, Danckaert A, Thoulouze MI, de Chaumont F, Duong T, Perrault N, Varin-Blank N, Olivo-Marin JC, Etienne-Manneville S, Arpin M, Di Bartolo V, Alcover A. Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse. EMBO J. 2010;29:2301–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Dustin ML. T-cell activation through immunological synapses and kinapses. Immunol Rev. 2008;221:77–89.

    Article  CAS  PubMed  Google Scholar 

  61. Hamon M, Bierne H, Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol. 2006;4:423–34.

    Article  CAS  PubMed  Google Scholar 

  62. Veiga E, Cossart P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol. 2005;7:894–900.

    Article  CAS  PubMed  Google Scholar 

  63. Eibert SM, Lee KH, Pipkorn R, Sester U, Wabnitz GH, Giese T, Meuer SC, Samstag Y. Cofilin peptide homologs interfere with immunological synapse formation and T cell activation. Proc Natl Acad Sci U S A. 2004;101:1957–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Husson J, Chemin K, Bohineust A, Hivroz C, Henry N. Force generation upon T cell receptor engagement. PLoS One. 2011;6:e19680.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bell GI. Models for the specific adhesion of cells to cells. Science. 1978;200:618–27.

    Article  CAS  PubMed  Google Scholar 

  66. Evans E. Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct. 2001;30:105–28.

    Article  CAS  PubMed  Google Scholar 

  67. Kim ST, Takeuchi K, Sun ZY, Touma M, Castro CE, Fahmy A, Lang MJ, Wagner G, Reinherz EL. The alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem. 2009;284:31028–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Li YC, Chen BM, Wu PC, Cheng TL, Kao LS, Tao MH, Lieber A, Roffler SR. Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J Immunol. 2010;184:5959–63.

    Article  CAS  PubMed  Google Scholar 

  69. Judokusumo E, Tabdanov E, Kumari S, Dustin ML, Kam LC. Mechanosensing in T lymphocyte activation. Biophys J. 2012;102:L5–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. O'Connor RS, Hao X, Shen K, Bashour K, Akimova T, Hancock WW, Kam LC, Milone MC. Substrate rigidity regulates human T cell activation and proliferation. J Immunol. 2012;189:1330–9.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Engl W, Arasi B, Yap LL, Thiery JP, Viasnoff V. Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions. Nat Cell Biol. 2014;16:587–94.

    Article  CAS  PubMed  Google Scholar 

  72. Chu YS, Thomas WA, Eder O, Pincet F, Perez E, Thiery JP, Dufour S. Force measurements in E-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. J Cell Biol. 2004;167:1183–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gomez TS, Billadeau DD. T cell activation and the cytoskeleton: you can't have one without the other. Adv Immunol. 2008;97:1–64.

    Article  CAS  PubMed  Google Scholar 

  74. Chua KN, Sim WJ, Racine V, Lee SY, Goh BC, Thiery JP. A cell-based small molecule screening method for identifying inhibitors of epithelial-mesenchymal transition in carcinoma. PLoS One. 2012;7:e33183.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Aref AR, Huang RY, Yu W, Chua KN, Sun W, Tu TY, Bai J, Sim WJ, Zervantonakis IK, Thiery JP, Kamm RD. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integr Biol (Camb). 2013;5:381–9.

    Article  CAS  Google Scholar 

  76. Kaizuka Y, Douglass AD, Varma R, Dustin ML, Vale RD. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci U S A. 2007;104:20296–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rebecca Anne Jackson for her excellent editing. JP Thiery is supported by core grants from IMCB and NUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Paul Thiery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engl, W., Viasnoff, V., Thiery, J.P. (2015). Epithelial Mesenchymal Transition Influence on CTL Activity. In: Bonavida, B., Chouaib, S. (eds) Resistance of Cancer Cells to CTL-Mediated Immunotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-17807-3_12

Download citation

Publish with us

Policies and ethics