Advertisement

Partial Functional Evolution Equations with Finite Delay

  • Saïd Abbas
  • Mouffak Benchohra
Chapter
  • 597 Downloads
Part of the Developments in Mathematics book series (DEVM, volume 39)

Abstract

In this chapter, we study some first order classes of partial functional, neutral functional, integro-differential, and neutral integro-differential evolution equations on a positive line \(\mathbb{R}_{+}\) with local and nonlocal conditions when the historical interval H is bounded, i.e., when the delay is finite. In the literature devoted to equations with finite delay, the phase space is much of time the space of all continuous functions on H for r > 0, endowed with the uniform norm topology. Using a recent nonlinear alternative of Leray–Schauder type for contractions in Fréchet spaces due to Frigon and Granas combined with the semigroup theory, the existence and uniqueness of the mild solution will be obtained. The method we are going to use is to reduce the existence of the unique mild solution to the search for the existence of the unique fixed point of an appropriate contraction operator in a Fréchet space.

References

  1. 26.
    A. Arara, M. Benchohra, A. Ouahab, Some uniqueness results for controllability functional semilinear differential equations in Fréchet spaces. Nonlinear Oscil. 6(3), 287–303 (2003)CrossRefMathSciNetGoogle Scholar
  2. 33.
    S. Baghli, M. Benchohra, Uniqueness results for evolution equations with infinite delay in Fréchet spaces. Fixed Point Theory 9, 395–406 (2008)MathSciNetGoogle Scholar
  3. 37.
    S. Baghli, M. Benchohra, Existence results for semilinear neutral functional differential equations involving evolution operators in Fréchet spaces. Georgian Math. J. 17, 423–436 (2010)zbMATHMathSciNetGoogle Scholar
  4. 41.
    K. Balachandran, E.R. Anandhi, Boundary controllability of integrodifferential systems in Banach spaces. Proc. Indian Acad. Sci. (Math. Sci.) 111, 127–135 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 42.
    K. Balachandran, E.R. Anandhi, Controllability of neutral integrodifferential infinite delay systems in Banach spaces. Taiwan. J. Math. 8, 689–702 (2004)zbMATHMathSciNetGoogle Scholar
  6. 44.
    K. Balachandran, R.R. Kumar, Existence of solutions of integrodifferential evolution equations with time varying delays. Appl. Math. E 7, 1–8 (2007)MathSciNetGoogle Scholar
  7. 45.
    K. Balachandran, A. Leelamani, Null controllability of neutral integrodifferential systems with infinite delay. Math. Problems Eng. 2006, 1–18 (2006)CrossRefMathSciNetGoogle Scholar
  8. 58.
    M. Benchohra, S.K. Ntouyas, Existence of mild solutions on semiinfinite interval for first order differential equation with nonlocal condition. Comment. Math. Univ. Carolinae 41(3), 485–491 (2000)zbMATHMathSciNetGoogle Scholar
  9. 59.
    M. Benchohra, S.K. Ntouyas, Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal condition. Dyn. Syst. Appl. 9(3), 405–412 (2000)MathSciNetGoogle Scholar
  10. 60.
    M. Benchohra, S.K. Ntouyas, Existence results on infinite intervals for neutral functional differential and integrodifferential inclusions in Banach spaces. Georgian Math. J. 7, 609–625 (2000)MathSciNetGoogle Scholar
  11. 61.
    M. Benchohra, S.K. Ntouyas, Existence results for neutral functional differential and integrodifferential inclusions in Banach spaces. Electron. J. Differ. Equ. 2000(20), 1–15 (2000)MathSciNetGoogle Scholar
  12. 64.
    M. Benchohra, S.K. Ntouyas, Controllability results for multivalued semilinear neutral functional equations. Math. Sci. Res. J. 6, 65–77 (2002)zbMATHMathSciNetGoogle Scholar
  13. 65.
    M. Benchohra, S.K. Ntouyas, Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions. Georgian Math. J. 7(2), 221–230 (2002)MathSciNetGoogle Scholar
  14. 66.
    M. Benchohra, S.K. Ntouyas, Existence of mild solutions of second order initial value problems for delay integrodifferential inclusions with nonlocal conditions. Math. Bohem. 127, 613–622 (2002)MathSciNetGoogle Scholar
  15. 72.
    M. Benchohra, L. Górniewicz, S.K. Ntouyas, Controllability of neutral functional differential and integrodifferential inclusions in Banach spaces with nonlocal conditions. Nonlinear Anal. Forum 7, 39–54 (2002)MathSciNetGoogle Scholar
  16. 75.
    M. Benchohra, E.P. Gatsori, L. Górniewicz, S.K. Ntouyas, Controllability results for evolution inclusions with non-local conditions. Z. Anal. Anwendungen 22, 411–431 (2003)CrossRefMathSciNetGoogle Scholar
  17. 76.
    M. Benchohra, L. Górniewicz, S.K. Ntouyas, Controllability of Some Nonlinear Systems in Banach spaces: The fixed point theory approach (Pawel Wlodkowicz University College, Plock, 2003)Google Scholar
  18. 77.
    M. Benchohra, E.P. Gastori, S.K. Ntouyas, Existence results for semi-linear integrodifferential inclusions with nonlocal conditions. Rocky Mountain J. Math. 34, 833–848 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 89.
    L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 90.
    L. Byszewski, Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz. 18, 109–112 (1993)MathSciNetGoogle Scholar
  21. 91.
    L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, in Selected Problems of Mathematics, 25–33, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6 (Cracow University Technology, Kraków, 1995)Google Scholar
  22. 92.
    L. Byszewski, H. Akca, On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stochastic Anal. 10, 265–271 (1997)CrossRefMathSciNetGoogle Scholar
  23. 112.
    A. Freidman, Partial Differential Equations (Holt, Rinehat and Winston, New York, 1969)Google Scholar
  24. 113.
    M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications. Proc. Am. Math. Soc. 128(10), 2957–2965 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 116.
    M. Frigon, A. Granas, Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet. Ann. Sci. Math. Québec 22(2), 161–168 (1998)zbMATHMathSciNetGoogle Scholar
  26. 117.
    X. Fu, Controllability of neutral functional differential systems in abstract space. Appl. Math. Comput. 141, 281–296 (2003)CrossRefMathSciNetGoogle Scholar
  27. 119.
    X. Fu, K. Ezzinbi, Existence of solutions for neutral functional differential evolution equations with nonlocal conditions. Nonlinear Anal. 54, 215–227 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 138.
    E. Hernandez, A Massera type criterion for a partial neutral functional differential equation. Electron. J. Differ. Equ. 2002(40), 1–17 (2002)zbMATHGoogle Scholar
  29. 149.
    S.G. Krein, Linear Differential Equations in Banach Spaces (The American Mathematical Society, Providence, 1971)Google Scholar
  30. 156.
    G. Li, X. Xue, Controllability of evolution inclusions with nonlocal conditions. Appl. Math. Comput. 141, 375–384 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 165.
    S.K. Ntouyas, Global existence for neutral functional integrodifferential equations. Nonlinear Anal. 30, 2133–2142 (1997)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Saïd Abbas
    • 1
  • Mouffak Benchohra
    • 2
  1. 1.Laboratoire de MathématiquesUniversité de SaïdaSaïdaAlgeria
  2. 2.Department of MathematicsUniversity of Sidi Bel AbbesSidi Bel AbbesAlgeria

Personalised recommendations