Broadband Internet Access on board High Speed Trains, A Technological Survey

  • Émilie Masson
  • Marion Berbineau
  • Sébastien Lefebvre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9066)


Advances in information and communication technologies lead to the adoption of wireless communications in all sectors, including railway domain. Wireless communications for railway can be used for several applications, requiring safety, reliability, availability, high capacities, etc. Furthermore, wireless communications have been deeply integrated into people’s life and current public telecommunication services increased the needs for mobility services. Railway domain is more and more competitive and it becomes crucial for railway operators to make additional revenue by offering more comfortable and pleasant travels thanks to new on board services. Thus, broadband Internet access on board trains has become, in recent years, an essential and highly expected service in the railway domain. This paper aims at presenting the different technologies that can bring an Internet access on board High Speed Trains.


Cognitive Radio High Speed Train Geostationary Earth Orbit Satellite Solution Technological Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ai, B., Cheng, X., Kürner, T., Zhong, Z.D., Guan, K., He, R.S., Xiong, L., Matolak, D.W., Michelson, D.G., Briso-Rodriguez, C.: Challenges Toward Wireless Communications for High-Speed Railway. IEEE Transactions On Intelligent Transportation Systems 15(5) (October 2014)Google Scholar
  2. 2.
    Fokum, D.T., Frost, V.S.: A Survey on Methods for Broadband Internet Access on Trains. IEEE Communications Surveys & Tutorials 12(2), 171–185 (2010)CrossRefGoogle Scholar
  3. 3.
    Ghannoum, H., Sanz, D.: Internet Onboard: technical analysis. In: 5th International Workshop on Communication Technologies for Vehicles, Nets4cars/Nets4trains, Lille, France (May 2013)Google Scholar
  4. 4.
  5. 5.
    Kumar, R., Angolkar, P., Das, D., Ramalingam, R.: SWiFT: A Novel Architecture for Seamless Wireless Internet for Fast Trains. In: IEEE Vehicular Technology Conference (VTC Spring), Singapore, pp. 3011–3015 (May 2008)Google Scholar
  6. 6.
    Pareit, D., Van Brussel, W., Torfs, W., De Cleyn, P.: QoS-enabled Internet-on-train network architecture: inter-working by MMP-SCTP versus MIP. In: 7th International Conference on Intelligent Transportation Systems Telecommunications (ITST), Sophia-Antipolis, France, pp. 1–6 (June 2007)Google Scholar
  7. 7.
    Rodriguez, P., Chakravorty, R., Chesterfield, J., Pratt, I., Banerjee, S.: MAR: A Commuter Router Infrastructure for the Mobile Internet. In: 2nd International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 217–230 (June 2004)Google Scholar
  8. 8.
    Chini, P., Giambene, G., Kota, S.: A survey on mobile satellite systems. International Journal of Satellite Communications and Networking 28(1), 29–57 (2010)Google Scholar
  9. 9.
    Hu, Y., Li, V.O.: Satellite-based Internet: a tutorial. IEEE Communications Magazine 39(3), 154–162 (2001)CrossRefGoogle Scholar
  10. 10.
    Fabri, A., Nieva, T., Umiliachi, P.: Use of the Internet for Remote Train Monitoring anc Control: the ROSIN Project. In: Rail Technology 1999, London, UK (September 1999)Google Scholar
  11. 11.
    Gatti, A.: Trains as Mobile devices: the TrainCom project. In: Wireless Design Conference, London, UK (May 2002)Google Scholar
  12. 12.
    Schena, V., Ceprani, F.: FIFTH Project solutions demonstrating new satellite broadband communication system for high speed train. In: IEEE 59th Vehicular Technology Conference, VTC-Spring, vol. 5, pp. 2831–2835 (2004)Google Scholar
  13. 13.
    Billion, J., Van den Abeele, D.: ICOM: A Communication Framework for Interoperable European Railways. In: 7th International Conference on Intelligent Transportation Systems Telecommunications (ITST), pp. 1–6. IEEE, Nice (2007)Google Scholar
  14. 14.
    Berbineau, M., Chennaoui, M., Gransart, C., Afifi, H., Bonnin, J.-M., Sanz, D., Duchange, D.: High Data Rate Transmissions for High Speed Trains, Dream or Reality? Technical state of the art and user requirements, Train-IPSAT Project - WP1. Tech. rep., Synthesis INRETS 51 (June 2006) ISBN 278-2-85782-643-5, ISSN 0769-0274Google Scholar
  15. 15.
  16. 16.
    Wilson, D.: 10 Years of Wi-Fi on the East Coast Mainline. In: The WiFi on Trains Conference - Train Communications Systems, London, UK (June 2014)Google Scholar
  17. 17.
  18. 18.
    Thomson, H.H.: Challenges of Internet & Multimedia on Trains. The WiFi on Trains Conference - Train Communications Systems. London, UK (June 2014)Google Scholar
  19. 19.
  20. 20.
    NTV. NTV Presentation. The WiFi on Trains Conference - Train Communications Systems, London, UK (June 2014) Google Scholar
  21. 21.
    Niravkuamr, D.: 2nd Generation Of Secured Satellite Based Broadband System for efficient train operation and passenger Wi-Fi. In: The WiFi on Trains Conference - Train Communications Systems, London, UK (June 2014)Google Scholar
  22. 22.
    Sanz, D.: Satellite Technologies for Broadband Internet Access Onboard High Speed Trains. In: 7th World Congress on Railway Research, Montreal, Canada (June 2006)Google Scholar
  23. 23.
    Sanz, D., Pasquet, P., Mercier, P., Villeforceix, B., Duchange, D.: TGV Communicant Research Program: from research to industrialization of onboard, broadband Internet services for high-speed trains. In: 8th World Congress on Railway Research, Seoul, Korea (May 2008)Google Scholar
  24. 24.
  25. 25.
    Brown, L.: Eurostar brings Wi-Fi on board. EURAILmag. 26, 189–190 (2014)Google Scholar
  26. 26.
    Ghannoum, H., Sanz, D., Villeforceix, B., Philippe, H., Mercier, P.: Delivering broadband Internet access for high speed trains passengers using the new WiFi standard 8802.11 for train-to-ground communications. In: 9th World Congress on Railway Research, Lille, France (May 2011)Google Scholar
  27. 27.
    De Greve, F., Lannoo, B., Peters, L., Leeuwen, T., Van Quickenborne, F., Colle, D., Demeester, P.: FAMOUS: A Network Architecture for Delivering Multimedia Services to FAst MOving USers. Wireless Personal Communications 33(3-4), 281–304 (2005)CrossRefGoogle Scholar
  28. 28.
    Fettweis, G., Irmer, R.: WIGWAM: System concept development for 1 Gbit/s air interface. In: 14th Wireless World Research Forum (WWRF 2005) (July 2005)Google Scholar
  29. 29.
    Ishizu, K., Kuroda, M., Harada, H.: Bullet-train Network Architecture for Broadband and Real-time Access. In: IEEE Symposium on Computers and Communications, pp. 241–248. IEEE, Aveiro (2007)Google Scholar
  30. 30.
    Aguado, M., Onandi, O., Agustin, P.S., Higuero, M., Taquet, E.J.: WiMAX on Rails. VTC Magazine 3(3), 47–56 (2008)Google Scholar
  31. 31.
    Ray, S.K., Pawikowski, K., Sirisena, H.: Handover in Mobile WiMAX Networks: The State of Art and Research Issues. IEEE Communications and Surveys & Tutorials 12(3), 376–399 (2010)CrossRefGoogle Scholar
  32. 32.
    Matsumoto, T.: Adding WiFi and Other Information Services to JR East Trains. In: The WiFi on Trains Conference - Train Communications Systems, London, UK (June 2014)Google Scholar
  33. 33.
    Yamada, K.: A High Speed Mobile Communication System Implementing Bicasting Architecture on the IP Layer, Technical report (2012)Google Scholar
  34. 34.
    Lannoo, B., Colle, D., Pickavet, M., Demeester, P.: Radio-over-fiber-based solution to provide broadband internet access to train passengers. IEEE Communications Magazine 45(2), 56–62 (2007)CrossRefGoogle Scholar
  35. 35.
    Maureira, J.-C.: Internet on Rails. PhD thesis, University of Nice - Sophia-Antipolis (January 2011)Google Scholar
  36. 36.
    Schienbein, M., Dangelmeyr, J.: TrainCom radio system. Telefunken RACOMS (2009)Google Scholar
  37. 37.
  38. 38.
  39. 39.
    Nakagawa, S., Matsubara, H., Nakamura, K., Tatsui, D., Haruyama, S., Teraoka, F.: Broadband Telecommunication System for Railways Using Laser Technology. In: 9th World Congress on Railway Research, Lille, France (May 2011)Google Scholar
  40. 40.
    Paudel, R., Ghassemlooy, Z., Le-Minh, H., Rajbhandari, S.: Modelling of free space optical link for ground-to-train communications using a Gaussian source. IET Optoelectronics 7(1), 1–8 (2013)CrossRefGoogle Scholar
  41. 41.
    Mitola, J., Maguire, G.Q.: Cognitive Radio: Making Software Radios More Personal. IEEE Personal Communication Magazine 6(4), 13–18 (1999)CrossRefGoogle Scholar
  42. 42.
    Amanna, A., Gadhiok, M., Price, M.J., Reed, J.H., Siriwongpairat, W.P., Himsoon, T.K.: Railway Cognitive Radio. IEEE Vehicular Technology Magazine 5(3), 82–89 (2010)CrossRefGoogle Scholar
  43. 43.
    Berbineau, M., et al.: Cognitive Radio for High Speed Railway through Dynamic and Opportunistic spectrum Reuse, Transport Research Arena, Paris (April 2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Émilie Masson
    • 1
  • Marion Berbineau
    • 2
  • Sébastien Lefebvre
    • 1
  1. 1.Institut de Recherche Technologique RaileniumFamarsFrance
  2. 2.Univ Lille Nord de FranceVilleneuve d’AscqFrance

Personalised recommendations