Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2134))

  • 664 Accesses

Abstract

In this chapter we study the properties of minimum action curves, often focusing on a specific subclass of actions. First we show which points minimizing curves can pass “in infinite length.” Then we find for a certain type of Hamiltonian actions that the action of the drift vector field’s flowlines vanishes, and that bending curves into the direction of the drift reduces their action. As a consequence, we then prove the non-existence of minimizers in some situations, and we show that minimizers leading from one attractor of the drift to another have to pass a saddle point on the separatrix between the two basins of attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, V.I.: Ordinary Differential Equations, 1st edn. Universitext. Springer, Berlin/Heidelberg/New York (1992)

    Google Scholar 

  2. Bao, D.D.W., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)

    Google Scholar 

  3. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. International Series in Pure and Applied Mathematics. McGraw-Hill, New York/Toronto/London (1955)

    MATH  Google Scholar 

  4. Day, M.V.: Regularity of boundary quasi-potentials for planar systems. Appl. Math. Optim. 30(1), 79–101 (1994)

    Article  MathSciNet  Google Scholar 

  5. Day, M.V., Darden, T.A.: Some regularity results on the Ventcel-Freidlin quasi-potential function. Appl. Math. Optim. 13(1), 259–282 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. E, W., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

    Google Scholar 

  7. E, W., Ren, W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57(5), 637–656 (2004)

    Google Scholar 

  8. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, vol. 260, 2nd edn. Springer, New York (1998)

    Google Scholar 

  9. Heymann, M.: The geometric minimum action method: A least action principle on the space of curves. Ph.D. thesis, New York University (2007)

    Google Scholar 

  10. Heymann, M., Vanden-Eijnden, E.: The geometric minimum action method: A least action principle on the space of curves. Commun. Pure Appl. Math. 61(8), 1052–1117 (2008)

    Article  MathSciNet  Google Scholar 

  11. Heymann, M., Vanden-Eijnden, E.: Pathways of maximum likelihood for rare events in nonequilibrium systems: Application to nucleation in the presence of shear. Phys. Rev. Lett. 100, 140601 (2008)

    Article  Google Scholar 

  12. Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6(3), 223–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lima, E.L.: The Jordan-Brouwer separation theorem for smooth hypersurfaces. Am. Math. Mon. 95(1), 39–42 (1988)

    Article  MathSciNet  Google Scholar 

  14. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 3rd edn. Springer, New York (2001)

    Google Scholar 

  15. Roma, D.M., O’Flanagan, R.A., Ruckenstein, A.E., Sengupta, A.M., Mukhopadhyay, R.: Optimal path to epigenetic switching. Phys. Rev. E 71, 011902 (2005)

    Article  Google Scholar 

  16. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis: Queues, Communications, and Computing. Stochastic Modeling Series. Chapman & Hall, London/Glasgow (1995)

    MATH  Google Scholar 

  17. Simon, B.: Semiclassical analysis of low lying eigenvalues, II. Tunneling. Ann. Math., 2nd Ser. 120(1), 89–118 (1984)

    Google Scholar 

  18. Stein, E.M., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton Lectures in Analysis. Princeton University Press, Princeton/Oxford (2005)

    Google Scholar 

  19. Vanden-Eijnden, E., Heymann, M.: The geometric minimum action method for computing minimum energy paths. J. Chem. Phys. 128(6), 061103 (2008)

    Article  Google Scholar 

  20. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, 2nd edn. Springer, Berlin/Heidelberg/New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heymann, M. (2015). Properties of Minimum Action Curves. In: Minimum Action Curves in Degenerate Finsler Metrics. Lecture Notes in Mathematics, vol 2134. Springer, Cham. https://doi.org/10.1007/978-3-319-17753-3_4

Download citation

Publish with us

Policies and ethics