Skip to main content

Virtual Reality in Stroke Rehabilitation

  • Chapter

Abstract

Stroke is a serious condition that negatively affects patients and their families. Up to 85 % of stroke patients experience weakness in their arms and/or legs immediately after a stroke. Approximately two out of three stroke survivors continue to experience some level of longer term difficulty in performing daily activities.

Conventional rehabilitation (i.e., physiotherapy, occupational therapy) involves methods to improve motor function or to restore body movements back to normal. However, the techniques used in usual rehabilitation programs can be tedious and costly, usually requiring transportation of stroke patients to special rehabilitation centers. Hence, new rehabilitation techniques (e.g., virtual reality, robotics) are emerging to improve the life of stroke survivors. The entertainment industry has developed a new and possibly useful technology that can be used in rehabilitation: virtual reality games. Virtual reality games allow a person to experience and handle lifelike situations, which have been created by a computer system. This technology (i.e.: Nintendo Wii©, Kinect, Playstation, among other devices) is less costly, is widely available, and could be used in patients’ homes. In addition, this technology uses important concepts in rehabilitation, and may improve arm and/or leg movement after a stroke. In this chapter, we review recent advances using virtual reality technology in stroke rehabilitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPS:

Assessment of Motor and Process Skills

BBT:

Box and Blocks Test

BESTest:

Balance Evaluation Systems Test

C:

Control group

CO:

Cable orthosis

CR:

Conventional rehabilitation

FIM:

Functional Independence Measure

FM:

Fugl-Meyer Arm Scale

JTHF:

Jebsen Test of Hand Function

MFT:

Manual Function Test

MoCA:

Montreal Cognitive Assessment

MRI:

Magnetic resonance imaging

MSA:

Modified Ashworth Scale

PE:

Physical environment

PO:

Pneumatic orthosis

RA:

Recreational activities

RCT:

Randomized controlled trial

SIS:

Stroke Impact Scale

VE:

Virtual environment

VR:

Virtual reality

WMFT:

Wolf Motor Function Test

References

  1. Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke. 2005;36(7):1480–4.

    Article  PubMed  Google Scholar 

  2. Mayo NE, Wood-Dauphinee S, Ahmed S, Gordon C, Higgins J, McEwen S, et al. Disablement following stroke. Disabil Rehabil. 1999;21(5-6):258–68.

    Article  CAS  PubMed  Google Scholar 

  3. Teasell RW, Foley NC, Salter KL, Jutai JW. A blueprint for transforming stroke rehabilitation care in Canada: the case for change. Arch Phys Med Rehabil. 2008;89(3):575–8.

    Article  PubMed  Google Scholar 

  4. Teasell R, Meyer MJ, McClure A, Pan C, Murie-Fernandez M, Foley N, et al. Stroke rehabilitation: an international perspective. Top Stroke Rehabil. 2009;16(1):44–56.

    Article  PubMed  Google Scholar 

  5. Langhammer B, Stanghelle JK. Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin Rehabil. 2000;14(4):361–9.

    Article  CAS  PubMed  Google Scholar 

  6. van Vliet PM, Lincoln NB, Foxall A. Comparison of Bobath based and movement science based treatment for stroke: a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2005;76(4):503–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.

    Article  PubMed  Google Scholar 

  8. Jutai JW, Teasell RW. The necessity and limitations of evidence-based practice in stroke rehabilitation. Top Stroke Rehabil. 2003;10(1):71–8.

    Article  PubMed  Google Scholar 

  9. Rizzo AA, Buckwalter JG. Virtual reality and cognitive assessment and rehabilitation: the state of the art. Stud Health Technol Inform. 1997;44:123–45.

    CAS  PubMed  Google Scholar 

  10. Virtual reality in neuro-psycho-physiology. Cognitive, clinical and methodological issues in assessment and rehabilitation. Stud Health Technol Inform. 1997;44:1–209.

    Google Scholar 

  11. Doerr KU, Rademacher H, Huesgen S, Kubbat W. Evaluation of a low-cost 3D sound system for immersive virtual reality training systems. IEEE Trans Vis Comput Graph. 2007;13(2):204–12.

    Article  PubMed  Google Scholar 

  12. Goude D, Bjork S, Rydmark M. Game design in virtual reality systems for stroke rehabilitation. Stud Health Technol Inform. 2007;125:146–8.

    PubMed  Google Scholar 

  13. Ring H. Is neurological rehabilitation ready for ‘immersion’ in the world of virtual reality? Disabil Rehabil. 1998;20(3):98–101.

    Article  CAS  PubMed  Google Scholar 

  14. Rose FD, Brooks BM, Rizzo AA. Virtual reality in brain damage rehabilitation: review. Cyberpsychol Behav. 2005;8(3):241–62. discussion 63–71.

    Article  PubMed  Google Scholar 

  15. Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14(2):52–61.

    Article  PubMed  Google Scholar 

  16. Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–9.

    CAS  PubMed  Google Scholar 

  17. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.

    Article  PubMed  Google Scholar 

  18. Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC. Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997;28(8):1550–6.

    Article  CAS  PubMed  Google Scholar 

  19. Jang SH, You SH, Hallett M, Cho YW, Park CM, Cho SH, et al. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch Phys Med Rehabil. 2005;86(11):2218–23.

    Article  PubMed  Google Scholar 

  20. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002;125(Pt 4):773–88.

    Article  PubMed  Google Scholar 

  21. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.

    Article  CAS  PubMed  Google Scholar 

  22. Buccino G, Solodkin A, Small SL. Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav Neurol. 2006;19(1):55–63.

    Article  PubMed  Google Scholar 

  23. Kuhn S, Romanowski A, Schilling C, Lorenz R, Morsen C, Seiferth N, et al. The neural basis of video gaming. Transl Psychiatry. 2011;1:e53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sescousse G, Redoute J, Dreher JC. The architecture of reward value coding in the human orbitofrontal cortex. J Neurosci. 2010;30(39):13095–104.

    Article  CAS  PubMed  Google Scholar 

  25. Saposnik G, Levin M. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–6.

    Article  PubMed  Google Scholar 

  26. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2011; (9):CD008349.

    Google Scholar 

  27. Kwon JS, Park MJ, Yoon IJ, Park SH. Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation. 2012;31(4):379–85.

    PubMed  Google Scholar 

  28. Subramanian SK, Lourenco CB, Chilingaryan G, Sveistrup H, Levin MF. Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. 2013;27(1):13–23.

    Article  PubMed  Google Scholar 

  29. Cameirao MS, Badia SB, Duarte E, Frisoli A, Verschure PF. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012;43(10):2720–8.

    Article  PubMed  Google Scholar 

  30. Salter KL, Teasell RW, Foley NC, Jutai JW. Outcome assessment in randomized controlled trials of stroke rehabilitation. Am J Phys Med Rehabil. 2007;86(12):1007–12.

    Article  PubMed  Google Scholar 

  31. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  32. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91.

    Article  CAS  PubMed  Google Scholar 

  33. Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30(10):2131–40.

    Article  CAS  PubMed  Google Scholar 

  34. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

    Article  PubMed  Google Scholar 

  35. Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987;1:6–18.

    CAS  PubMed  Google Scholar 

  36. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–70.

    Article  CAS  PubMed  Google Scholar 

  37. McAuley E, Duncan T, Tammen VV. Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: a confirmatory factor analysis. Res Q Exerc Sport. 1989;60(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  38. Levin MF, Desrosiers J, Beauchemin D, Bergeron N, Rochette A. Development and validation of a scale for rating motor compensations used for reaching in patients with hemiparesis: the reaching performance scale. Phys Ther. 2004;84(1):8–22.

    PubMed  Google Scholar 

  39. Saposnik G, Mamdani M, Bayley M, Thorpe KE, Hall J, Cohen LG, et al. Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int J Stroke. 2010;5(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  40. Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010;41(7):1477–84.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr. Saposnik is supported by the Distinguished Clinician Scientist Award from Heart and Stroke Foundation of Canada.

Dr. Saposnik is the principal investigator of virtual reality studies for stroke rehabilitation including EVREST Multicenter (ClinicalTrials.gov# NCT01406912), iHome acute, iHome chronic (ClinicalTrials.gov# NCT01836159), and KiWii sponsored by the Heart and Stroke Foundation of Canada, Ontario Stroke Network, and the Ontario Ministry of Health and Long Term Care.

Funding: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Saposnik M.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saposnik, G. (2016). Virtual Reality in Stroke Rehabilitation. In: Ovbiagele, B. (eds) Ischemic Stroke Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-17750-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17750-2_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17749-6

  • Online ISBN: 978-3-319-17750-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics