Skip to main content

Struvite Stone Formation by Ureolytic Biofilm Infections

  • Chapter
The Role of Bacteria in Urology

Abstract

This chapter describes how urinary tract infections can lead to stone formation. The most frequent type of infection stone is struvite (MgNH4PO4 · 6H2O), although it is common that struvite stones and infections are associated with other stone types, often forming large staghorn calculi. A complete understanding of struvite stone formation requires knowledge of the pathogen biology, including metabolic activity and motility, as well as a basic understanding of how minerals form.

The pathogens responsible for struvite stones are those that break down urea into ammonium (NH4 +) and inorganic carbon. This reaction, known as ureolysis, increases the pH of urine and the concentration of NH4 +, thus increasing the saturation index of struvite. If supersaturation is reached, i.e. the ion activity product (IAP) is greater than the ion activity product at equilibrium (Ksp), struvite stone formation is possible.

An important consideration with urinary tract infections is that pathogens often form attached communities, known as biofilms, which help them to survive physical and chemical stresses. Not only are biofilm-related infections more difficult to treat, but they can facilitate stone formation by creating gradients in chemical concentrations near surfaces. Modern laboratory bioreactors and computer models, described in this chapter, are improving our understanding of how and why infection stones such as struvite form. Current treatment options for infection stones can be painful or ineffective. As more is learned about the complex microbe-fluid-mineral interactions, less-invasive treatments and more-effective prevention strategies will be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams F. The genuine works of hippocrates. New York: William and Wood; 1929.

    Google Scholar 

  2. Murphy L. The history of urology. Springfield: Charles C. Thomas Publisher LTD; 1972.

    Google Scholar 

  3. Bazin D, Andre G, Weil R, Matzen G, Emmanuel V, Carpentier X, Daudon M. Absence of bacterial imprints on struvite-containing kidney stones: a structural investigation at the mesoscopic and atomic scale. Urology. 2012;79:786–90.

    Article  PubMed  Google Scholar 

  4. Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon. 2003;49:71–82.

    Article  PubMed  Google Scholar 

  5. Bichler KH, Eipper E, Naber K, Braun V, Zimmermann R, Lahme S. Urinary infection stones. Int J Antimicrob Agents. 2002;19:488–98.

    Article  CAS  PubMed  Google Scholar 

  6. Jones BD, Mobley HLT. Genetic and biochemical diversity of ureases of proteus, providencia, and morganella species isolated from urinary-tract infection. Infect Immun. 1987;55:2198–203.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Griffith DP. Infection-induced renal calculi. Kidney Int. 1982;21:422–30.

    Article  CAS  PubMed  Google Scholar 

  8. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.

    Article  CAS  PubMed  Google Scholar 

  9. Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of proteus mirabilis. Nat Rev Microbiol. 2012;10:743–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. McLean RJC, Nickel JC, Cheng KJ, Costerton JW. The ecology and pathogenicity of urease-producing bacteria in the urinary-tract. CRC Crit Rev Microbiol. 1988;16:37–79.

    Article  CAS  Google Scholar 

  11. Griffith DP. Struvite stones. Kidney Int. 1978;13:372–82.

    Article  CAS  PubMed  Google Scholar 

  12. Holmes R, Knight J, Assimos D. Origin of urinary oxalate. Indianapolis: AIP; 2007. p. 176.

    Google Scholar 

  13. Aage HK, Andersen BL, Blom A, Jensen I. The solubility of struvite. J Radioanal Nucl Chem. 1997;223:213–5.

    Article  CAS  Google Scholar 

  14. De Yoreo JJ, Vekilov PG. Principles of crystal nucleation and growth. In: Biomineralization, vol. 54. Washington, DC: Mineralogical Society of America; 2003.

    Google Scholar 

  15. Hinman F. Directional growth of renal calculi. J Urol. 1979;121:700–5.

    PubMed  Google Scholar 

  16. Wickham JEA. Matrix and infective renal calculus. Br J Urol. 1975;47:727–32.

    Article  CAS  PubMed  Google Scholar 

  17. Desgrandchamps F, Moulinier F, Daudon M, Teillac P, LeDuc A. An in vitro comparison of urease-induced encrustation of JJ stents in human urine. Br J Urol. 1997;79:24–7.

    Article  CAS  PubMed  Google Scholar 

  18. Jones DS, Djokic J, Gorman SP. Characterization and optimization of experimental variables within a reproducible bladder encrustation model and in vitro evaluation of the efficacy of urease inhibitors for the prevention of medical device-related encrustation. J Biomed Mater Res B Appl Biomater. 2006;76B:1–7.

    Article  CAS  Google Scholar 

  19. Morris NS, Stickler DJ, Winters C. Which indwelling urethral catheters resist encrustation by proteus mirabilis biofilms? Br J Urol. 1997;80:58–63.

    Article  CAS  PubMed  Google Scholar 

  20. Tunney MM, Keane PF, Jones DS, Gorman SP. Comparative assessment of ureteral stent biomaterial encrustation. Biomaterials. 1996;17:1541–6.

    Article  CAS  PubMed  Google Scholar 

  21. Chew BH, Duvdevani M, Denstedt JD. New developments in ureteral stent design, materials and coatings. Expert Rev Med Devices. 2006;3:395–403.

    Article  CAS  PubMed  Google Scholar 

  22. Gilmore BF, Hamill TM, Jones DS, Gorman SP. Validation of the cdc biofilm reactor as a dynamic model for assessment of encrustation formation on urological device materials. J Biomed Mater Res B Appl Biomater. 2010;93B:128–40.

    CAS  Google Scholar 

  23. Schulz A, Vestweber AM, Leis W, Stark D, Dressler D. An improved model of a catheterised human bladder for screening bactericidal agents. Aktuelle Urol. 2008;39:53–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bucs SS, Radu AI, Lavric V, Vrouwenvelder JS, Picioreanu C. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study. Desalination. 2014;343:26–37.

    Article  CAS  Google Scholar 

  25. Radu AI, Bergwerff L, van Loosdrecht MCM, Picioreanu C. A two-dimensional mechanistic model for scaling in spiral wound membrane systems. Chem Eng J. 2014;241:77–91.

    Article  CAS  Google Scholar 

  26. Parkhurst D, Appelo C: User’s guide to PHREEQC (Version 2) — A Computer Program For Speciation, Batch-Reaction, One-Dimensional Transport, And Inverse Geochemical Calculations. U.S. Geological Survey Water-Resources Investigations Report 99–4259. 312 pp. (1999). http://pubs.er.usgs.gov/publication/wri994259

  27. Nardi A, Idiart A, Trinchero P, de Vries LM, Molinero J. Interface comsol-phreeqc (icp), an efficient numerical framework for the solution of coupled multiphysics and geochemistry. Comput Geosci. 2014;69:10–21.

    Article  CAS  Google Scholar 

  28. Flannigan R, Choy WH, Chew B, Lange D. Renal struvite stones-pathogenesis, microbiology, and management strategies. Nat Rev Urol. 2014;11:333–41.

    Article  CAS  PubMed  Google Scholar 

  29. Parmar MS. Kidney stones. Br Med J. 2004;328:1420–4.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation through NSF award DMS-0934696. James Connolly was also supported by a NSF-IGERT fellowship in Geobiological Systems at Montana State University (DGE-0654336). Trace Hobbs was supported by a Howard Hughes Medical Institute Scholarship through Montana State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Logan N. Schultz PhD or Robin Gerlach PhD Diplom-Ingenieur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schultz, L.N., Connolly, J., Lauchnor, E., Hobbs, T.A., Gerlach, R. (2016). Struvite Stone Formation by Ureolytic Biofilm Infections. In: Lange, D., Chew, B. (eds) The Role of Bacteria in Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-17732-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17732-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17731-1

  • Online ISBN: 978-3-319-17732-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics