Skip to main content

Lagrangian Modelling of Saltating Sediment Transport: A Review

  • Chapter
  • First Online:
Rivers – Physical, Fluvial and Environmental Processes

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

One hundred years of research on the saltation in rivers, both experimental and numerical, has allowed for a fairly good improvement of our knowledge of the physics of the saltation process. Lagrangian modelling has played a huge role in this field and has made it possible to apply the knowledge obtained in the analysis of processes associated with the movement of sediment particles. The present paper briefly reviews the current state-of-the-art of the Lagrangian modelling of saltating grains in open channels and highlights recent findings in three areas in which employment of the Lagrangian models of saltation improve our understanding of sediment transport in rivers, namely: initial motion of saltating grains, diffusion of particles and calculation of the bedload transport rate. The particular challenges in all of these research areas are discussed and future ways forward are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original spellings are used here.

References

  • Abbott JE, Francis JRD (1977) Saltation and suspension trajectories of solid grains in a water stream. Phil Trans R Soc Lond A 284(1321):225–254

    Article  Google Scholar 

  • Bagnold RA (1956) The flow of cohesionless grains in fluid. Phil Trans R Soc Lond A 249:235–297

    Article  Google Scholar 

  • Bagnold RA (1973) The nature of saltation and of bedload transport in water. Proc R Soc Lond A 332(1591):473–504

    Article  Google Scholar 

  • Basset AB (1888) A treatise on hydrodynamics: with numerous examples. Deighton, Bell and Co., Cambridge; George Bell and Sons, London, p 264

    Google Scholar 

  • Bialik RJ (2010) Modeling of the saltating particles motion in the river flow and the bedload sediment transport. Ph.D. thesis, Institute of Geophysics, Polish Academy of Sciences, Warsaw, (in Polish)

    Google Scholar 

  • Bialik RJ (2011a) Particle–particle collision in Lagrangian modeling of saltating grains. J Hydraul Res 49(1):23–31

    Article  Google Scholar 

  • Bialik RJ (2011b) Numerical study of saltation of non-uniform grains. J Hydraul Res 49(5):697–701

    Article  Google Scholar 

  • Bialik RJ, Nikora VI, Rowiński PM (2012) 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow. Acta Geophys 60(6):1639–1660

    Article  Google Scholar 

  • Bialik RJ (2013) Numerical study of near-bed turbulence structures influence on the initiation of saltating grains movement. J Hydrol Hydromech 61(3):202–207

    Article  Google Scholar 

  • Bialik RJ, Czernuszenko W (2013) On the numerical analysis of bedload transport of saltating grains. Int J Sediment Res 28(3):413–420

    Article  Google Scholar 

  • Bialik RJ, Nikora VI, Karpiński M, Rowiński PM (2015) Diffusion of bedload particles in open-channels flows: distribution of travel times and second-order statistics of particle trajectories. Environ Fluid Mech (on-line first)

    Google Scholar 

  • Bombardelli FA, González AE, Niño YI (2008) Computation of the particle basset force with a fractional-derivative approach. J Hydraul Eng ASCE 134(10):1513–1520

    Article  Google Scholar 

  • Boussinesq J (1903) Théorie analytique de la chaleur. Gauthier-Villars, Imprimeur-Libraire, Paris

    Google Scholar 

  • Bradley DN, Tucker GE, Benson DA (2010) Fractional dispersion in a sand bed river. J Geophys Res 115:F00A09

    Google Scholar 

  • Browne T (1646) Pseudodoxia Epidemica. Of the picture of a Grashopper 5(3):274–275

    Google Scholar 

  • Cameron SM (2006) Near-boundary flow structure and particle entrainment. Ph.D. thesis, University of Auckland, New Zealand

    Google Scholar 

  • Campagnol J, Radice A, Nokes R, Bulankina V, Lescova A, Ballio F (2013) Lagrangian analysis of bedload sediment motion: database contribution. J Hydraul Res 51(5):589–596

    Article  Google Scholar 

  • Corrsin S, Lumley J (1956) On the equation of motion for a particle in turbulent fluid. Appl Sci Res 6(2–3):114–116

    Google Scholar 

  • Czernuszenko W (1998) The drift velocity concept for sediment-laden flows. J Hydraul Eng 124(10):1026–1033

    Article  Google Scholar 

  • Czernuszenko W, Rowiński PM (2008) Shear stress statistics in a compound channel flow. Arch Hydro-Engin Environ Mech 55(1–2):3–27

    Google Scholar 

  • Drake TG, Shreve RL, Dietrich WE, Whiting PJ, Leopold LB (1988) Bedload transport of fine gravel observed by motion-picture photography. J Fluid Mech 192:193–217

    Article  Google Scholar 

  • Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Nord Hydrol 7:293–306

    Google Scholar 

  • Einstein HA (1942) Formula for the transportation of bedload. Trans ASCE 107:561–577

    Google Scholar 

  • Fernandez-Luque R, van Beek R (1976) Erosion and transport of bedload sediment. J Hydraul Res 14(2):127–144

    Article  Google Scholar 

  • Francis JRD (1973) Experiments on the motion of solitary grains along the bed of a water stream. Proc R Soc Lond A 332:443–471

    Article  Google Scholar 

  • Garcia M, Parker G (1991) Entrainment of bed sediment into suspension. J Hydraul Eng 117(4):414–435

    Article  Google Scholar 

  • Gilbert GK (1914) The transportation of debris by running water. US Geol Surv Prof Pap 89:263

    Google Scholar 

  • Gordon R, Carmichael JB, Isackson FJ (1972) Saltation of plastic balls in a one-dimensional flume. Water Resour Res 8(2):444–459

    Article  Google Scholar 

  • Habersack HM (2001) Radio-tracking gravel particles in a large braided river in New Zealand: a field test of the stochastic theory of bedload transport proposed by Einstein. Hydrol Process 15(3):377–391

    Article  Google Scholar 

  • Ji C, Munjiza A, Avital E, Xu D, Williams J (2014) Saltation of particles in turbulent channel flow. Phys Rev E 89:052202

    Article  Google Scholar 

  • Kharlamova IS, Vlasak P (2015) Dependence of saltation characteristics on bed organisation in numerical simulation. Geosci J 9(1):177–184

    Article  Google Scholar 

  • Lajeunesse E, Malverti L, Charru F (2010) Bedload transport in turbulent flow at the grain scale: experiments and modeling. J Geophys Res 115:F04001

    Google Scholar 

  • Lee SL (1987) A unified theory on particle transport in a turbulent dilute two-phase suspension flow II. Int J Multiphase Flow 13(1):137–144

    Article  Google Scholar 

  • Lee SL, Wiesler MA (1987) Theory on transverse migration of particles in a turbulent two-phase suspension flow due to turbulent diffusion I. Int J Multiphase Flow 13(1):99–111

    Article  Google Scholar 

  • Lee HY, Hsu IS (1994) Investigation of saltating particles motions. J Hydraul Eng 120(7):831–845

    Article  Google Scholar 

  • Lee HY, Hsu IS (1996) Particle spinning motion during saltating particles. J Hydraul Eng 122(10):587–589

    Article  Google Scholar 

  • Lee HY, Chen YH, You JY, Lin YT (2000) Investigation of continuous bedload saltating process. J Hydraul Eng 126(9):691–700

    Article  Google Scholar 

  • Lee HY, You JY, Lin YT (2002) Continuous saltating process of multiple sediment particles. J Hydraul Eng 128(4):443–450

    Article  Google Scholar 

  • Lee HY, Lin YT, Chen YH, You JY, Wang HW (2006) On three-dimensional continuous saltating process of sediment particles near the channel bed. J Hydraul Res 44(3):374–389

    Article  Google Scholar 

  • Lu SS, Willmarth WW (1973) Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech 60:481–571

    Article  Google Scholar 

  • Lukerchenko N, Chara Z, Vlasak P (2006) 2D numerical model of particle-bed collision in fluid-particle flows over bed. J Hydraul Res 44(1):70–78

    Article  Google Scholar 

  • Lukerchenko N, Kvurt Y, Kharlamov A, Chara Z, Vlasak P (2008) Experimental evaluation of the drag force and drag torque acting on a rotating spherical particle moving in fluid. J Hydrol Hydromech 56(2):88–94

    Google Scholar 

  • Lukerchenko N, Piatsevich S, Chara Z, Vlasak P (2009a) 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed. J Hydrol Hydromech 57(2):100–112

    Article  Google Scholar 

  • Lukerchenko N, Piatsevich S, Chara Z, Vlasak P (2009b) Numerical model of spherical particle saltation in a channel with a transversely tilted rough bed. J Hydrol Hydromech 57(3):182–190

    Article  Google Scholar 

  • Lukerchenko N, Dolansky J, Vlasak P (2012) Basset force in numerical models of saltation. J Hydrol Hydromech 60(4):277–287

    Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion of a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889

    Article  Google Scholar 

  • McEwan IK, Willetts BB (1991) Numerical model of the saltation cloud. Acta Mech Suppl 1:53–66

    Article  Google Scholar 

  • McEwan IK, Jefcoate BJ, Willetts BB (1999) The grain-fluid interaction as a self-stabilizing mechanism in fluvial bedload transport. Sedimentology 46:407–416

    Article  Google Scholar 

  • McGee WJ (1908) Outlines of hydrology. Geol Soc America Bull 19:193–220

    Article  Google Scholar 

  • Mei R, Adrian RJ, Hanratty T (1991) Particle dispersion in isotropic turbulence under Stokes drag and Basset force with gravitational settling. J Fluid Mech 225:481–495

    Article  Google Scholar 

  • Meyer-Peter E, Muller R (1948) Formulas for bedload transport. Proc 2nd Int IAHR Congress

    Google Scholar 

  • Moreno PM, Bombardelli FA (2012) 3D numerical simulation of particle–particle collisions in saltation mode near stream beds. Acta Geophys 60(6):1661–1688

    Article  Google Scholar 

  • Murphy PJ, Hooshiari H (1982) Saltation in water dynamics. J Hydraul Div 108(11):1251–1267

    Google Scholar 

  • Nelson JM, Shreve RL, McLean SR, Drake TG (1995) Role of near-bed turbulence structure in bedload transport and form mechanics. Water Resour Res 31(8):2071–2086

    Article  Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. Balkema, Netherlads

    Google Scholar 

  • Nikora V, Heald J, Goring D, McEwan I (2001) Diffusion of saltating particles in unidirectional water flow over a rough granular bed. J Phys A: Math Gen 34:743–749

    Article  Google Scholar 

  • Nikora V, Habersack H, Huber T, McEwan I (2002) On bed particle diffusion in gravel bed flows under weak bedload transport. Water Resour Res 38(6):17-1–17-9

    Google Scholar 

  • Niño Y (1995) Particle motion in the near wall region of a turbulent open channel flow: implications for bedload transport by saltation and sediment entrainment into suspension. Ph.D. thesis, University of Illinois at Urban-Champaign, Urbana, Illinois

    Google Scholar 

  • Niño Y, Garcia M (1994) Gravel saltation 2. Modelling. Water Resour Res 30(6):1915–1924

    Article  Google Scholar 

  • Niño Y, Garcia M (1998a) Experiments on saltation of sand in water. J Hydraul Eng 124(10):1014–1025

    Article  Google Scholar 

  • Niño Y, Garcia M (1998b) Using Lagrangian particle saltation observations for bedload sediment transport modelling. Hydrol Process 12(8):1197–1218

    Article  Google Scholar 

  • Ossen CW (1927) Neure methoden und ergebnisse in der hydrodynamik. Akademische Verlagsgesellschaft, Leipzig, p 337

    Google Scholar 

  • Rowiński PM, Lee SL (1993) Equilibrium profile of suspended sediment concentration. Acta Geophys Pol 41(2):163–176

    Google Scholar 

  • Rowiński PM (1995) Transport of solid particles in turbulent water flow. Ph.D. thesis, Institute of Geophysics, Polish Academy of Sciences, Warsaw, (in Polish)

    Google Scholar 

  • Roseberry JC, Schmeeckle MW, Furbish DJ (2012) A probabilistic description of the bedload sediment flux: 2. Particle activity and motions. J Geophys Res 117:F03032

    Google Scholar 

  • Sayre W, Hubbell D (1965) Transport and dispersion of labeled bed material, North Loup River, Nebraska. US Geol Surv Prof Pap 433(C):1–48

    Google Scholar 

  • Schmeeckle MW, Nelson JM, Pitlick J, Bennett JP (2001) Interparticle collision of natural sediment grains in water. Water Resour Res 37(9):2377–2391

    Article  Google Scholar 

  • Sekine M, Kikkawa H (1992) Mechanics of saltating grains. II. J Hydraul Eng 118(4):536–558

    Article  Google Scholar 

  • Sørensen M, McEwan IK (1996) On the effect of mid-air collisions on aeolian saltation. Sedimentology 43(1):65–76

    Article  Google Scholar 

  • Tchen CM (1947) Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Ph.D. thesis, The Hague, Marinus Nijhoff

    Google Scholar 

  • Tucker GE, Bradley DN (2010) Trouble with diffusion: reassessing hillslope erosion laws with a particle-based model. J Geophys Res 115:F00A10

    Google Scholar 

  • White BR (1979) Soil transport by winds on Mars. J Geophys Res 84(B9):4643–4651

    Article  Google Scholar 

  • White BR, Greeley R, Iversen JD, Pollack JB (1976) Estimated grain saltation in a Martian atmosphere. J Geophys Res 81(32):5643–5650

    Article  Google Scholar 

  • Wiberg PL, Smith JD (1985) A theoretical model for saltating grains in water. J Geophys Res 90(C4):7341–7354

    Article  Google Scholar 

  • Wiberg PL, Smith JD (1987) Calculation of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour Res 23(8):1471–1480

    Article  Google Scholar 

  • Wiberg PL, Smith JD (1989) Model for calculating bedload transport of sediment. J Hydraul Eng 115(1):101–123

    Article  Google Scholar 

  • Yeganeh-Bakhtiary A, Shabani B, Gotoh H, Wang SSY (2009) A three-dimensional distinct element model for bedload transport. J Hydraul Res 47(2):203–212

    Article  Google Scholar 

  • Zhang Y, Meerschaert MM, Packman AI (2012) Linking fluvial bed sediment transport across scales. Geophys Res Lett 39:L20404

    Google Scholar 

  • Zou XY, Cheng H, Zhang CL, Zhao YZ (2007) Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain. Geomorphology 90(1–2):11–22

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported within statutory activities No. 3841/E-41/S/2014 of the Ministry of Science and Higher Education of Poland. I am very grateful to the Editors of this book: Professors Paweł Rowiński and Artur Radecki-Pawlik for their invitation to write this chapter. I appreciate the thoughtful discussions with many colleagues with whom I have been privileged to interact on this subject. In particular, I wish to thank to my family, and Professors: Francesco Ballio, Włodzimierz Czernuszenko, Willi Hager, Jarosław Napiórkowski, Vladimir Nikora and Paweł Rowiński.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Bialik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bialik, R.J. (2015). Lagrangian Modelling of Saltating Sediment Transport: A Review. In: Rowiński, P., Radecki-Pawlik, A. (eds) Rivers – Physical, Fluvial and Environmental Processes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17719-9_16

Download citation

Publish with us

Policies and ethics