Skip to main content

Gravitational Waves and the Quest for Their Direct Detection

  • Chapter
  • First Online:
  • 737 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter introduces gravitational waves and reviews the optical-interferometric experiments for their direct detection. This is intended as an overview of the field—for further detail, a recommended source is Pitkin et al. (Living Rev Relativ 14(5):75 pp, 2011, [1]). Section 2.1 presents the basics of gravitational waves and potential sources of such waves in our Universe. Section 2.2 presents an introduction to current, second generation and future ground-based interferometric detectors. Section 2.3 provides an overview of noise sources currently affecting ground based measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Pitkin, S. Reid, S. Rowan, J. Hough, Gravitational wave detection by interferometry (ground and space). Living Rev. Relativ. 14(5), 75 (2011)

    Google Scholar 

  2. A. Einstein, The foundation of the general theory of relativity. Ann. Phys. Lpz 49, 769 (1916)

    Article  ADS  MATH  Google Scholar 

  3. K.S. Thorne, Gravitational Waves (1995), arXiv:gr-qc/9506086v1

  4. C. Cutler, K.S. Thorne, An Overview of Gravitational-Waves Sources (2002), arXiv:gr-qc/0204090v1

  5. The LIGO Scientific Collaboration and the Virgo Collaboration, J. Abadie et al., Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quantum Gravity 27, 173001 (2010)

    Google Scholar 

  6. M. Maggiore, Gravitational wave experiments and early universe cosmology. Phys. Rep. 331, 283 (2000)

    Article  ADS  Google Scholar 

  7. C.D. Ott, Probing the core-collapse supernova mechanism with gravitational waves. Class. Quantum Gravity 26, 204015 (2009)

    Article  ADS  Google Scholar 

  8. J. Logue, C.D. Ott, I.S. Heng, P. Kalmus, J.H.C. Scargill, Inferring Core-Collapse Supernova Physics with Gravitational Waves (2012), arXiv:1202.3256v2

  9. E.E. Flanagan, S.A. Hughes, Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown. Phys. Rev. D 57, 4535 (1998)

    Article  ADS  Google Scholar 

  10. P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  11. R.A. Hulse, J.H. Taylor, Discovery of a pulsar in a binary system. Astrophys. J. (Lett.) 195, L51 (1975)

    Google Scholar 

  12. J.H. Taylor, J.M. Weisberg, Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. Astrophys. J. 345, 434 (1989)

    Article  ADS  Google Scholar 

  13. J.H. Taylor, J.M. Weisberg, A new test of general relativity: gravitational radiation and the binary pulsar PSR 1913+16. Astrophys. J. 253, 908 (1982)

    Article  ADS  Google Scholar 

  14. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini, M. Colpi, N.J. Cornish, K. Danzmann, J.-F. Dufaux, J. Gair, O. Jennrich, P. Jetzer, A. Klein, R.N. Lang, A. Lobo, T. Littenberg, S.T. McWilliams, G. Nelemans, A. Petiteau, E.K. Porter, B.F. Schutz, A. Sesana, R. Stebbins, T. Sumner, M. Vallisneri, S. Vitale, M. Volonteri, H. Ward, Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime (2012), arXiv:1201.3621v1

  15. S. Kawamura, M. Ando, N. Seto, S. Sato, T. Nakamura, K. Tsubono, N. Kanda, T. Tanaka, J. Yokoyama, I. Funaki, K. Numata, K. Ioka, T. Takashima, K. Agatsuma, T. Akutsu, K. Aoyanagi, K. Arai, A. Araya, H. Asada, Y. Aso, D. Chen, T. Chiba, T. Ebisuzaki, Y. Ejiri, M. Enoki, Y. Eriguchi, M.-K. Fujimoto, R. Fujita, M. Fukushima, T. Futamase, T. Harada, T. Hashimoto, K. Hayama, W. Hikida, Y. Himemoto, H. Hirabayashi, T. Hiramatsu, F.-L. Hong, H. Horisawa, M. Hosokawa, K. Ichiki, T. Ikegami, K.T. Inoue, K. Ishidoshiro, H. Ishihara, T. Ishikawa, H. Ishizaki, H. Ito, Y. Itoh, K. Izumi, I. Kawano, N. Kawashima, F. Kawazoe, N. Kishimoto, K. Kiuchi, S. Kobayashi, K. Kohri, H. Koizumi, Y. Kojima, K. Kokeyama, W. Kokuyama, K. Kotake, Y. Kozai, H. Kunimori, H. Kuninaka, K. Kuroda, S. Kuroyanagi, K. Maeda, H. Matsuhara, N. Matsumoto, Y. Michimura, O. Miyakawa, U. Miyamoto, S. Miyoki, M.Y. Morimoto, T. Morisawa, S. Moriwaki, S. Mukohyama, M. Musha, S. Nagano, I. Naito, K. Nakamura, H. Nakano, K. Nakao, S. Nakasuka, Y. Nakayama, K. Nakazawa, E. Nishida, K. Nishiyama, A. Nishizawa, Y. Niwa, T. Noumi, Y. Obuchi, M. Ohashi, N. Ohishi, M. Ohkawa, K. Okada, N. Okada, K. Oohara, N. Sago, M. Saijo, R. Saito, M. Sakagami, S. Sakai, S. Sakata, M. Sasaki, T. Sato, M. Shibata, H. Shinkai, A. Shoda, K. Somiya, H. Sotani, N. Sugiyama, Y. Suwa, R. Suzuki, H. Tagoshi, F. Takahashi, K. Takahashi, K. Takahashi, R. Takahashi, R. Takahashi, T. Takahashi, H. Takahashi, T. Akiteru, T. Takano, N. Tanaka, K. Taniguchi, A. Taruya, H. Tashiro, Y. Torii, M. Toyoshima, S. Tsujikawa, Y. Tsunesada, A. Ueda, K. Ueda, M. Utashima, Y. Wakabayashi, K. Yagi, H. Yamakawa, K. Yamamoto, T. Yamazaki, C.-M. Yoo, S. Yoshida, T. Yoshino, K.-X. Sun, The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Gravity 28(9), 094011 (2011)

    Article  ADS  Google Scholar 

  16. L. Gottardi, A. de Waard, O. Usenko, G. Frossati, Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5 K. Phys. Rev. D 76, 102005 (2007)

    Article  ADS  Google Scholar 

  17. P. Astone, R. Ballantini, D. Babusci, M. Bassan, P. Bonifazi, G. Cavallari, A. Chincarini, E. Coccia, S. D’Antonio, M. Di Paolo Emilio, V. Fafone, S. Foffa, G. Gemme, G. Giordano, M. Maggiore, A. Marini, Y. Minenkov, I. Modena, G. Modestino, A. Moleti, G.V. Pallottino, R. Parodi, G. Pizzella, EXPLORER and NAUTILUS gravitational wave detectors: a status report. Class. Quantum Gravity 25, 114048 (2008)

    Google Scholar 

  18. A. Vinante, (for the AURIGA Collaboration), Present performance and future upgrades of the AURIGA capacitive readout. Class. Quantum Gravity 23, S103–S110 (2006)

    Google Scholar 

  19. O.D. Aguiar, L.A. Andrade, J.J. Barroso, P.J. Castro, C.A. Costa, S.T. de Souza, A. de Waard, A.C. Fauth, C. Frajuca, G. Frossati, S.R. Furtado, X. Gratens, T.M.A. Maffei, N.S. Magalhaes, R. M. Marinho Jr., N.F. Oliveira Jr., G.L. Pimentel, M.A. Remy, M.E. Tobar, E. Abdalla, M.E.S. Alves, D.F.A. Bessada, F.S. Bortoli, C.S.S. Brandao, K.M.F. Costa, H.A.B. de Araujo, J.C.N. de Araujo, E.M. de Gouveia Dal Pino, W. de Paula, E.C. de Rey Neto, E.F.D. Evangelista, C.H. Lenzi, G.F. Marranghello, O.D. Miranda, S.R. Oliveira, R. Opher, E.S. Pereira, C. Stellati, J. Weber, The Schenberg spherical gravitational wave detector: the first commissioning runs. Class. Quantum Gravity 25, 114042 (2008)

    Google Scholar 

  20. G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer, M. Bailes, N.D.R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, I. Cognard, W. Coles, J. Cordes, P. Demorest, G. Desvignes, R.D. Ferdman, L. Finn, P. Freire, M. Gonzalez, J. Hessels, A. Hotan, G. Janssen, F. Jenet, A. Jessner, C. Jordan, V. Kaspi, M. Kramer, V. Kondratiev, J. Lazio, K. Lazaridis, K.J. Lee, Y. Levin, A. Lommen, D. Lorimer, R. Lynch, A. Lyne, R. Manchester, M. McLaughlin, D. Nice, S. Oslowski, M. Pilia, A. Possenti, M. Purver, S. Ransom, J. Reynolds, S. Sanidas, J. Sarkissian, A. Sesana, R. Shannon, X. Siemens, I. Stairs, B. Stappers, D. Stinebring, G. Theureau, R. van Haasteren, W. van Straten, J.P.W. Verbiest, D.R.B. Yardley, X.P. You, The international pulsar timing array project: using pulsars as a gravitational wave detector. Class. Quantum Gravity 27, 084013 (2010)

    Article  ADS  Google Scholar 

  21. G.B. Hobbs, M. Bailes, N.D.R. Bhat, S. Burke-Spolaor, D.J. Champion, W. Coles, A. Hotan, F. Jenet, L. Kedziora-Chudczer, J. Khoo, K.J. Lee, A. Lommen, R.N. Manchester, J. Reynolds, J. Sarkissian, W. van Straten, S. To, J.P.W. Verbiest, D. Yardley, X.P. You, Gravitational-wave detection using pulsars: status of the Parkes pulsar timing array project. Publ. Astron. Soc. Aust. 26, 103 (2009)

    Article  ADS  Google Scholar 

  22. G.H. Janssen, B.W. Stappers, M. Kramer, M. Purver, A. Jessner, I. Cognard, European pulsar timing array. AIP Conf. Proc. 983, 633–635 (2008)

    Article  ADS  Google Scholar 

  23. F. Jenet, L.S. Finn, J. Lazio, A. Lommen, M. McLaughlin, I. Stairs, D. Stinebring, J. Verbiest. The North American Nanohertz Observatory for Gravitational Waves (2009), arXiv:0909.1058

  24. P.E. Dewdney, P.J. Hall, R.T. Schilizzi, T.J.L.W. Lazio, The square kilometre array. Proc. IEEE 97(8), 1482–1496 (2009)

    Article  ADS  Google Scholar 

  25. The LIGO Scientific Collaboration (B.P. Abbott et al.), LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep. Prog. Phys. 72, 076901 (2009)

    Google Scholar 

  26. T. Accadia, F. Acernese, M. Alshourbagy, P. Amico, F. Antonucci, S. Aoudia, N. Arnaud, C. Arnault, K.G. Arun, P. Astone, S. Avino, D. Babusci, G. Ballardin, F. Barone, G. Barrand, L. Barsotti, M. Barsuglia, A. Basti, T.S. Bauer, F. Beauville, M. Bebronne, M. Bejger, M.G. Beker, F. Bellachia, A. Belletoile, J.L. Beney, M. Bernardini, S. Bigotta, R. Bilhaut, S. Birindelli, M. Bitossi, M.A. Bizouard, M. Blom, C. Boccara, D. Boget, F. Bondu, L. Bonelli, R. Bonnand, V. Boschi, L. Bosi, T. Bouedo, B. Bouhou, A. Bozzi, L. Bracci, S. Braccini, C. Bradaschia, M. Branchesi, T. Briant, A. Brillet, V. Brisson, L. Brocco, T. Bulik, H.J. Bulten, D. Buskulic, C. Buy, G. Cagnoli, G. Calamai, E. Calloni, E. Campagna, B. Canuel, F. Carbognani, L. Carbone, F. Cavalier, R. Cavalieri, R. Cecchi, G. Cella, E. Cesarini, E. Chassande-Mottin, S. Chatterji, R. Chiche, A. Chincarini, A. Chiummo, N. Christensen, A.C. Clapson, F. Cleva, E. Coccia, P.-F. Cohadon, C.N. Colacino, J. Colas, A. Colla, M. Colombini, G. Conforto, A. Corsi, S. Cortese, F. Cottone, J.-P. Coulon, E. Cuoco, S. D’Antonio, G. Daguin, A. Dari, V. Dattilo, P.Y. David, M. Davier, R. Day, G. Debreczeni, G. De Carolis, M. Dehamme, R. Del Fabbro, W. Del Pozzo, M. del Prete, L. Derome, R. De Rosa, R. DeSalvo, M. Dialinas, L. Di Fiore, A. Di Lieto, M. Di Paolo Emilio, A. Di Virgilio, A. Dietz, M. Doets, P. Dominici, A. Dominjon, M. Drago, C. Drezen, B. Dujardin, B. Dulach, C. Eder, A. Eleuteri, D. Enard, M. Evans, L. Fabbroni, V. Fafone, H. Fang, I. Ferrante, F. Fidecaro, I. Fiori, R. Flaminio, D. Forest, L.A. Forte, J.-D. Fournier, L. Fournier, J. Franc, O. Francois, S. Frasca, F. Frasconi, A. Freise, A. Gaddi, M. Galimberti, L. Gammaitoni, P. Ganau, C. Garnier, F. Garufi, M.E. Gáspár, G. Gemme, E. Genin, A. Gennai, G. Gennaro, L. Giacobone, A. Giazotto, G. Giordano, L. Giordano, C. Girard, R. Gouaty, A. Grado, M. Granata, V. Granata, X. Grave, C. Greverie, H. Groenstege, G.M. Guidi, S. Hamdani, J.-F. Hayau, S. Hebri, A. Heidmann, H. Heitmann, P. Hello, G. Hemming, E. Hennes, R. Hermel, P. Heusse, L. Holloway, D. Huet, M. Iannarelli, P. Jaranowski, D. Jehanno, L. Journet, S. Karkar, T. Ketel, H. Voet, J. Kovalik, I. Kowalska, S. Kreckelbergh, A. Krolak, J.C. Lacotte, B. Lagrange, P. La Penna, M. Laval, J.C. Le Marec, N. Leroy, N. Letendre, T.G.F. Li, B. Lieunard, N. Liguori, O. Lodygensky, B. Lopez, M. Lorenzini, V. Loriette, G. Losurdo, M. Loupias, J.M. Mackowski, T. Maiani, E. Majorana, C. Magazzù, I. Maksimovic, V. Malvezzi, N. Man, S. Mancini, B. Mansoux., M. Mantovani, F. Marchesoni, F. Marion, P. Marin, J. Marque, F. Martelli, A. Masserot, L. Massonnet, G. Matone, L. Matone, M. Mazzoni, F. Menzinger, C. Michel, L. Milano, Y. Minenkov, S. Mitra, M. Mohan, J.-L. Montorio, R. Morand, F. Moreau, J. Moreau, N. Morgado, A. Morgia, S. Mosca, V. Moscatelli, B. Mours, P. Mugnier, F.-A. Mul, L. Naticchioni, I. Neri, F. Nocera, E. Pacaud, G. Pagliaroli, A. Pai, L. Palladino, C. Palomba, F. Paoletti, R. Paoletti, A. Paoli, S. Pardi, G. Parguez, M. Parisi, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Perciballi, B. Perniola, G. Persichetti, S. Petit, M. Pichot, F. Piergiovanni, M. Pietka, R. Pignard, L. Pinard, R. Poggiani, P. Popolizio, T. Pradier, M. Prato, G. A. Prodi, M. Punturo, P. Puppo, K. Qipiani, O. Rabaste, D.S. Rabeling, I. Rácz, F. Raffaelli, P. Rapagnani, S. Rapisarda, V. Re, A. Reboux, T. Regimbau, V. Reita, A. Remilleux, F. Ricci, I. Ricciardi, F. Richard, M. Ripepe, F. Robinet, A. Rocchi, L. Rolland, R. Romano, D. Rosinska, P. Roudier, P. Ruggi, G. Russo, L. Salconi, V. Sannibale, B. Sassolas, D. Sentenac, S. Solimeno, R. Sottile, L. Sperandio, R. Stanga, R. Sturani, B. Swinkels, M. Tacca, R. Taddei, L. Taffarello, M. Tarallo, S. Tissot, A. Toncelli, M. Tonelli, O. Torre, E. Tournefier, F. Travasso, C. Tremola, E. Turri, G. Vajente, J.F.J. van den Brand, C. Van Den Broeck, S. van der Putten, M. Vasuth, M. Vavoulidis, G. Vedovato, D. Verkindt, F. Vetrano, O. Véziant, A. Vicerê, J.-Y. Vinet, S. Vilalte, S. Vitale, H. Vocca, R.L. Ward, M. Was, K. Yamamoto, M. Yvert, J.-P. Zendri, Z. Zhang, Virgo: a laser interferometer to detect gravitational waves. J. Instrum. 7(03), P03012 (2012)

    Google Scholar 

  27. H. Grote (for the LIGO Scientific Collaboration), The GEO 600 status. Class. Quantum Gravity 27, 084003 (2010)

    Google Scholar 

  28. M. Ando, K. Arai, R. Takahashi, G. Heinzel, S. Kawamura, D. Tatsumi, N. Kanda, H. Tagoshi, A. Araya, H. Asada, Y. Aso, M.A. Barton., M.-K. Fujimoto, M. Fukushima, T. Futamase, K. Hayama, G. Horikoshi, H. Ishizuka, N. Kamikubota, K. Kawabe, N. Kawashima, Y. Kobayashi, Y. Kojima, K. Kondo, Y. Kozai, K. Kuroda, N. Matsuda, N. Mio, K. Miura, O. Miyakawa, S.M. Miyama, S. Miyoki, S. Moriwaki, M. Musha, S. Nagano, K. Nakagawa, T. Nakamura, K. Nakao, K. Numata, Y. Ogawa, M. Ohashi, N. Ohishi, S. Okutomi, K. Oohara, S. Otsuka, Y. Saito, M. Sasaki, S. Sato, A. Sekiya, M. Shibata, K. Somiya, T. Suzuki, A. Takamori, T. Tanaka, S. Taniguchi, S. Telada, K. Tochikubo, T. Tomaru, K. Tsubono, N. Tsuda, T. Uchiyama, A. Ueda, K. Ueda, K. Waseda, Y. Watanabe, H. Yakura, K. Yamamoto, T. Yamazaki, (TAMA Collaboration). Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. Phys. Rev. Lett. 86(18), 3950–3954 (2001)

    Google Scholar 

  29. Advanced LIGO Website—Summary, https://www.advancedligo.mit.edu/summary.html

  30. Atlas of the universe, http://www.atlasoftheuniverse.com

  31. R. Adhikari, P. Fritschel, S. Waldman, Enhanced LIGO—Technical Note LIGO-T060156-01-I (2006), http://www.ligo.caltech.edu/docs/T/T060156-01.pdf

  32. T. Accadia, B.L. Swinkels (for the Virgo Collaboration), Commissioning status of the Virgo interferometer. Class. Quantum Gravity 27, 084002 (2010)

    Google Scholar 

  33. The LIGO Scientific Collaboration and The Virgo Collaboration (J. Abadie et al.), Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO’s Sixth and Virgo’s Second and Third Science Runs (2012), arXiv:1203.2674v2

  34. G.M. Harry, (for the LIGO Scientific Collaboration), Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Gravity 27, 084006 (2010)

    Google Scholar 

  35. Indian Initiative in Gravitational-wave Observations—IndIGO, http://www.gw-indigo.org/tiki-index.php?page=Welcome

  36. The Virgo Collaboration, Advanced Virgo Baseline Design—VIR-027A-09 (2009), https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf

  37. K. Kuroda (for the LCGT Collaboration), Status of LCGT. Class. Quantum Gravity 27, 084004 (2010)

    Google Scholar 

  38. B. Willke, P. Ajith, B. Allen, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B.W. Barr, S. Berukoff, A. Bunkowski, G. Cagnoli, C.A. Cantley, M.M. Casey, S. Chelkowski, Y. Chen, D. Churches, T. Cokelaer, C.N. Colacino, D.R.M. Crooks, C. Cutler, K. Danzmann, R.J. Dupuis, E. Elliffe, C. Fallnich, A. Franzen, A. Freise, I. Gholami, S. Goßler, A. Grant, H. Grote, S. Grunewald, J. Harms, B. Hage, G. Heinzel, I.S. Heng, A. Hepstonstall, M. Heurs, M. Hewitson, S. Hild, J. Hough, Y. Itoh, G. Jones, R. Jones, S.H. Huttner, K. Kötter, B. Krishnan, P. Kwee, H. Lück, M. Luna, B. Machenschalk, M. Malec, R.A. Mercer, T. Meier, C. Messenger, S. Mohanty, K. Mossavi, S. Mukherjee, P. Murray, G.P. Newton, M.A. Papa, M. Perreur-Lloyd, M. Pitkin, M.V. Plissi, R. Prix, V. Quetschke, V. Re, T. Regimbau, H. Rehbein, S. Reid, L. Ribichini, D.I. Robertson, N.A. Robertson, C. Robinson, J.D. Romano, S. Rowan, A. Rüdiger, B.S. Sathyaprakash, R. Schilling, R. Schnabel, B.F. Schutz, F. Seifert, A.M. Sintes, J.R. Smith, P.H. Sneddon, K.A. Strain, I. Taylor, R. Taylor, A. Thüring, C. Ungarelli, H. Vahlbruch, A. Vecchio, J. Veitch, H. Ward, U. Weiland, H. Welling, L. Wen, P. Williams, W. Winkler, G. Woan, R. Zhu, The GEO-HF project. Class. Quantum Gravity 23, S207 (2006)

    Article  ADS  Google Scholar 

  39. H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, R. Schnabel, The GEO600 squeezed light source. Class. Quantum Gravity 27, 084027 (2010)

    Article  ADS  Google Scholar 

  40. Gravitational Wave International Committee (GWIC), GWIC Roadmap—The Future of Gravitational Wave Astronomy, A Global Plan, https://gwic.ligo.org/roadmap/

  41. S. Hild, M. Abernathy, F. Acernese, P. Amaro-Seoane, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, N. Beveridge, S. Birindelli, S. Bose, L. Bosi, S. Braccini, C. Bradaschia, T. Bulik, E. Calloni, G. Cella, E. Chassande, Mottin, S. Chelkowski, A. Chincarini, J. Clark, E. Coccia, C. Colacino, J. Colas, A. Cumming, L. Cunningham, E. Cuoco, S. Danilishin, K. Danzmann, R. De Salvo, T. Dent, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets, V. Fafone, P. Falferi, R. Flaminio, J. Franc, F. Frasconi, A. Freise, D. Friedrich, P. Fulda, J. Gair, G. Gemme, E. Genin, A. Gennai, A. Giazotto, K. Glampedakis, C. Gräf, M. Granata, H. Grote, G. Guidi, A. Gurkovsky, G. Hammond, M. Hannam, J. Harms, D. Heinert, M. Hendry, I. Heng, E. Hennes, J. Hough, S. Husa, S. Huttner, G. Jones, F. Khalili, K. Kokeyama, K. Kokkotas, B. Krishnan, T.G.F. Li, M. Lorenzini, H. Lück, E. Majorana, I. Mandel, V. Mandic, M. Mantovani, I. Martin, C. Michel, Y. Minenkov, N. Morgado, S. Mosca, B. Mours, H. Müller-Ebhardt, P. Murray, R. Nawrodt, J. Nelson, R. O’shaughnessy, C.D. Ott, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti, D. Passuello, L. Pinard, W. Plastino, R. Poggiani, P. Popolizio, M. Prato, M. Punturo, P. Puppo, D. Rabeling, P. Rapagnani, J. Read, T. Regimbau, H. Rehbein, S. Reid, F. Ricci, F. Richard, A. Rocchi, S. Rowan, A. Rüdiger, L. Santamaría, B. Sassolas, B. Sathyaprakash, R. Schnabel, C. Schwarz, P. Seidel, A. Sintes, K. Somiya, F. Speirits, K. Strain, S. Strigin, P. Sutton, S. Tarabrin, A Thüring, J. van den Brand, M. van Veggel, C. van den Broeck, A. Vecchio, J. Veitch, F. Vetrano, A. Vicere, S. Vyatchanin, B. Willke, G. Woan, K. Yamamoto, Sensitivity studies for third-generation gravitational wave observatories. Class. Quantum Gravity 28, 094013 (2011)

    Google Scholar 

  42. S. Hild, S. Chelkowski, A. Freise, J. Franc, N. Morgado, R. Flaminio, R. DeSalvo, A xylophone configuration for a third-generation gravitational wave detector. Class. Quantum Gravity 27, 015003 (2010)

    Article  ADS  Google Scholar 

  43. R. Adhikari, K. Arai, S. Ballmer, E. Gustafson, S. Hild, Report of the 3rd generation LIGO detector strawman workshop (2012). LIGO-T1200031-v3

    Google Scholar 

  44. Gravitational Wave Interferometer Noise Calculator (GWINC) v3, https://awiki.ligo-wa.caltech.edu/aLIGO/GWINC

  45. G.M. Harry, A.M. Gretarsson, P.R. Saulson, S.E. Kittelberger, S.D. Penn, W.J. Startin, S. Rowan, M.M. Fejer, D.R.M. Crooks, G. Cagnoli, J. Hough, N. Nakagawa, Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Class. Quantum Gravity 19, 897 (2002)

    Google Scholar 

  46. A. Gillespie, F. Raab, Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors. Phys. Rev. D 52, 577 (1995)

    Article  ADS  Google Scholar 

  47. Y. Levin, Internal thermal noise in the LIGO test masses: a direct approach. Phys. Rev. D 57, 659 (1998)

    Article  ADS  Google Scholar 

  48. V.B. Braginsky, M.L. Gorodetsky, S.P. Vyatchanin, Thermo-refractive noise in gravitational wave antennae. Phys. Rev. A 271, 303 (2000)

    Google Scholar 

  49. T. Uchiyama, T. Tomaru, M.E. Tobar, D. Tatsumi, S. Miyoki, M. Ohashi, K. Kuroda, T. Suzuki, N. Sato, T. Haruyama, A. Yamamoto, T. Shintomi, Mechanical quality factor of a cryogenic sapphire test mass for gravitational wave detectors. Phys. Lett. A. 261, 5 (1999)

    Article  ADS  Google Scholar 

  50. A. Schroeter, R. Nawrodt, R. Schnabel, S. Reid, I. Martin, S. Rowan, C. Schwarz, T. Koettig, R. Neubert, M. Thürk, W. Vodel, A. Tünnermann, K. Danzmann, P. Seidel, On the Mechanical Quality Factors of Cryogenic Test Masses from Fused Silica and Crystalline Quartz (2007), arXiv:0709.4359v1

  51. D. Friedrich, B.W. Barr, F. Brückner, S. Hild, J. Nelson, J. Macarthur, M.V. Plissi, M.P. Edgar, S.H. Huttner, B. Sorazu, S. Kroker, M. Britzger, E.-B. Kley, K. Danzmann, A. Tünnermann, K.A. Strain, R. Schnabel, Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity. Opt. Express 19, 14955 (2011)

    Article  ADS  Google Scholar 

  52. R. Abbott, R. Adhikari, G. Allen, S. Cowley, E. Daw, D. DeBra, J. Giaime, G. Hammond, M. Hammond, C. Hardham, J. How, W. Hua, W. Johnson, B. Lantz, K. Mason, R. Mittleman, J. Nichol, S. Richman, J. Rollins, D. Shoemaker, G. Stapfer, R. Stebbins, Seismic isolation for advanced LIGO. Class. Quantum Gravity 19, 1591 (2002)

    Article  ADS  Google Scholar 

  53. P.R. Saulson, Terrestrial gravitational noise on a gravitational wave antenna. Phys. Rev. D 30, 732 (1984)

    Article  ADS  Google Scholar 

  54. S.A. Hughes, K.S. Thorne, Seismic gravity-gradient noise in interferometric gravitational-wave detectors. Phys. Rev. D 58, 122002 (1998)

    Article  ADS  Google Scholar 

  55. V.B. Braginsky, M.L. Gorodetsky, S.P. Vyatchanin, Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Phys. Rev. A 264, 1 (1999)

    Google Scholar 

  56. M. Zucker, S. Whitcomb, Measurement of optical path fluctuations due to residual gas in the LIGO 40 meter interferometer, in Proceedings of Seventh Marcel Grossman Meeting on General Relativity, (1996) pp. 1434–1436

    Google Scholar 

  57. E. Flanagan, K.S. Thorne, Noise Due to Backscatter Off Baffles, the Nearby Wall, and Objects at the Far end of the Beam Tube; and Recommended Actions (1994). LIGO-T940063-00-R

    Google Scholar 

  58. E. Flanagan, K.S. Thorne, Scattered-Light Noise for LIGO (1995). LIGO-T950132-00-R

    Google Scholar 

  59. T. Tomaru, Y. Saito, T. Kubo, Y. Sato, M. Tokunari, R. Takahashi, T. Suzuki, Y. Higashi, T. Shintomi, Y. Naito, N. Sato, T. Haruyama, A. Yamamoto, Study of optical dumpers used in high vacuum system of interferometric gravitational wave detectors. J. Phys. Conf. Ser. 32, 476–481 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheon S. Y. Chua .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chua, S.S.Y. (2015). Gravitational Waves and the Quest for Their Direct Detection. In: Quantum Enhancement of a 4 km Laser Interferometer Gravitational-Wave Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17686-4_2

Download citation

Publish with us

Policies and ethics