Skip to main content

Implementations of the Parallel-Sampling ADC Architecture

  • Chapter
  • First Online:
  • 889 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter describes circuit implementations of the parallel-sampling ADC architecture presented in Chap. 3. The parallel-sampling architecture is applied to two ADC architectures (a pipeline and a time-interleaving SAR ADC architecture), which are suitable for designing high-speed and medium-to-high resolution ADCs, to improve the ADC power efficiency for multi-carrier signals. Section 4.1 describes the architecture and operation of a 200 MS/s 12-b switched-capacitor pipeline ADC with a parallel-sampling first stage, which is suitable for broadband multi-carrier receivers for wireless standards such as LTE-advanced and the emerging generation of Wi-Fi (IEEE802.11ac) . A circuit implementation of the parallel-sampling first stage of the pipeline ADC is presented and simulation results are given. Section 4.2 presents the architecture and operation of a 4 GS/s 11 b time-interleaved ADC with a parallel-sampling frontend stage, which targets wideband direct sampling receivers for DOCSIS 3.0 cable modems . Circuit implementation and simulation of the 4 GS/s parallel-sampling frontend stage are given. Due to the complexity of implementing the proposed 4 GS/s ADC on chip, a two-step design approach was adopted. In Sect. 4.3, a prototype IC of an 11 b 1 GS/s ADC with a parallel sampling architecture is presented, which serves as a first step to validate the parallel-sampling ADC concept and the performance of the high-speed parallel-sampling frontend and detection circuits. In future work, the frontend stage of the IC can be interleaved by four times to achieve the aggregate sample rate of 4 GHz of the proposed ADC discussed in Sect. 4.2. Conclusions of this chapter are drawn in Sect. 4.4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lin, Y., K. Doris, H. Hegt, and A.H.M. Van Roermund. 2012. An 11b pipeline ADC with parallel-sampling technique for converting multi-carrier signals. IEEE Transactions on Circuits and Systems I: Regular Papers 59(5): 906–914.

    Article  MathSciNet  Google Scholar 

  2. LTE-Advanced Physical Layer. http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced. Accessed 15 June 2014.

  3. IEEE Standard for Information Technology: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11ac-2013, 1–425, Dec. 2013.

    Google Scholar 

  4. Murmann, B. ADC Performance Survey 1997–2014. http://web.stanford.edu/~murmann/adcsurvey.html.

  5. Gustavsson, M., J.J. Wikner, and N. Tan. 2000. CMOS data converters for communications, 2000th ed. Boston: Springer.

    Google Scholar 

  6. Chiu, Y. 2007. Analysis and design of pipeline analog-to-digital converters, 1st ed. Berlin: Springer.

    Google Scholar 

  7. Quinn, P.J., and A.H.M. Van Roermund. 2005. Design and optimization of multi-bit front-end stage and scaled back-end stages of pipelined ADCs. In IEEE International Symposium on Circuits and Systems. ISCAS 2005, 2005 (pp. 1964–1967, Vol. 3).

    Google Scholar 

  8. Abo, A.M., and P.R. Gray. 1999. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE Journal of Solid-State Circuits 34(5): 599–606.

    Article  Google Scholar 

  9. Ali, M.A., A. Morgan, C. Dillon, G. Patterson, S. Puckett, P. Bhoraskar, H. Dinc, M. Hensley, R. Stop, S. Bardsley, D. Lattimore, J. Bray, C. Speir, and R. Sneed. 2010. A 16-bit 250-MS/s IF sampling pipelined ADC with background calibration. IEEE Journal of Solid-State Circuits 45(12): 2602–2612.

    Article  Google Scholar 

  10. Quinn, P.J., and A.H.M. van Roermund. 2007. Design criteria for cyclic and pipelined ADCs. In Switched-capacitor techniques for high-accuracy filter and ADC design. Springer, Netherlands, 2007, 165–192.

    Google Scholar 

  11. Murmann, B. 2012. Low-power pipelined A/D conversion. In Analog circuit design, ed. M. Steyaert, A. van Roermund, and A. Baschirotto, 19–38. Netherlands: Springer.

    Chapter  Google Scholar 

  12. Kurose, D., T. Ito, T. Ueno, T. Yamaji, and T. Itakura. 2006. 55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers. IEEE Journal of Solid-State Circuits 41(7): 1589–1595.

    Article  Google Scholar 

  13. Mehr, I., and L. Singer. 2000. A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC. IEEE Journal of Solid-State Circuits 35(3): 318–325.

    Article  Google Scholar 

  14. Chang, D.-Y. 2004. Design techniques for a pipelined ADC without using a front-end sample-and-hold amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers 51(11): 2123–2132.

    Article  Google Scholar 

  15. Sahoo, B.D., and B. Razavi. 2009. A 12-Bit 200-MHz CMOS ADC. IEEE Journal of Solid-State Circuits 44(9): 2366–2380.

    Article  Google Scholar 

  16. Sumanen, L., M. Waltari, and K.A.I. Halonen. 2001. A 10-bit 200-MS/s CMOS parallel pipeline A/D converter. IEEE Journal of Solid-State Circuits 36(7): 1048–1055.

    Article  Google Scholar 

  17. Choksi, O., and L.R. Carley. 2003. Analysis of switched-capacitor common-mode feedback circuit. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 50(12): 906–917.

    Article  Google Scholar 

  18. IEEE Standard for Terminology and Test Methods of Digital-to-Analog Converter Devices. IEEE Std 1658-2011, 1–126, Feb. 2012.

    Google Scholar 

  19. Kester, W.A. 2005. Data Conversion Handbook. Newnes, Burlington

    Google Scholar 

  20. DOCSIS 3.0 Physical Layer Interface Specification. http://www.cablelabs.com/specification/docsis-3-0-physical-layer-interface-specification/. Accessed 09 June 2014.

  21. Doris, K., E. Janssen, C. Nani, A. Zanikopoulos, and G. Van Der Weide. 2011. A 480 mW 2.6 GS/s 10b time-interleaved ADC With 48.5 dB SNDR up to Nyquist in 65 nm CMOS. IEEE Journal of Solid-State Circuits 46(12): 2821–2833.

    Article  Google Scholar 

  22. Janssen, E., K. Doris, A. Zanikopoulos, A. Murroni, G. van der Weide, Y. Lin, L. Alvado, F. Darthenay, and Y. Fregeais. 2013. An 11b 3.6GS/s time-interleaved SAR ADC in 65 nm CMOS. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 464–465.

    Google Scholar 

  23. Gupta, S., M. Choi, M., Inerfield, and J. Wang. 2006. A 1GS/s 11b Time-Interleaved ADC in 0.13/spl mu/m CMOS. In Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, 2360–2369.

    Google Scholar 

  24. S.M. Louwsma, E.J.M. van Tuijl, M. Vertregt, and B. Nauta. 2007. “A 1.35 GS/s, 10b, 175 mW time-interleaved AD converter in 0.13 um CMOS.” In 2007 IEEE Symposium on VLSI Circuits, 62–63.

    Google Scholar 

  25. Chen, C.-Y., and J. Wu. 2011. A 12 b 3GS/s pipeline ADC with 500 mW and 0.4 mm2 in 40 nm digital CMOS.” In 2011 Symposium on VLSI Circuits (VLSIC), 120–121.

    Google Scholar 

  26. Doris, K., E. Janssen, C. Nani, A. Zanikopoulos, and G. Van Der Weide. 2011. “A 480 mW 2.6 GS/s 10 b 65 nm CMOS time-interleaved ADC with 48.5 dB SNDR up to Nyquist.” In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 180–182.

    Google Scholar 

  27. Payne, R., C. Sestok, W. Bright, M. El-Chammas, M. Corsi, D. Smith, and N. Tal. 2011. A 12 b 1 GS/s SiGe BiCMOS two-way time-interleaved pipeline ADC. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 182–184

    Google Scholar 

  28. Sahoo, B.D., and B. Razavi. 2012. A 10-bit 1-GHz 33-mW CMOS ADC. In 2012 Symposium on VLSI Circuits (VLSIC), 30–31.

    Google Scholar 

  29. Stepanovic, D., and B. Nikolic. 2012. A 2.8GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. In 2012 Symposium on VLSI Circuits (VLSIC), 84–85.

    Google Scholar 

  30. Wu, J., C.-Y. Chen, T. Li, W. Liu, L. He, S.S. Tsai, B. Chen, C.-S. Huang, J.-J. Hung, W.-T. Shih, H. Hung, S. Jaffe, L. Tan, and H. Vu. 2012. A 240mW 2.1GS/s 12b pipeline ADC using MDAC equalization. In 2012 IEEE Custom Integrated Circuits Conference (CICC), 1–4.

    Google Scholar 

  31. Setterberg, B., K. Poulton, S. Ray, D.J. Huber, V. Abramzon, G. Steinbach, J.P. Keane, B. Wuppermann, M. Clayson, M. Martin, R. Pasha, E. Peeters, A. Jacobs, F. Demarsin, A. Al-Adnani, and P. Brandt. 2013. A 14 b 2.5 GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 466–467.

    Google Scholar 

  32. Wu, J., A. Chou, C.-H. Yang, Y. Ding, Y.-J. Ko, S.-T. Lin, W. Liu, C.-M. Hsiao, M.-H. Hsieh, C.-C. Huang, J.-J. Hung, K.Y. Kim, M. Le, T. Li, W.-T. Shih, A. Shrivastava, Y.-C. Yang, C.-Y. Chen, and H.-S. Huang. 2013. A 5.4GS/s 12b 500 mW pipeline ADC in 28 nm CMOS. In 2013 Symposium on VLSI Circuits (VLSIC), C92–C93.

    Google Scholar 

  33. Lin, Y., K. Doris, E. Janssen, A. Zanikopoulos, A. Murroni, G. van der Weide, H. Hegt, and A. van Roermund. 2013. An 11b 1GS/s ADC with parallel sampling architecture to enhance SNDR for multi-carrier signals. In 2013 Proceedings of the ESSCIRC (ESSCIRC), 121–124.

    Google Scholar 

  34. Ali, A.M.A., H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, D. Jarman, J. Brunsilius, P. Derounian, B. Jeffries, U. Mehta, M. McShea, and H.-Y. Lee. 2014. A 14b 1GS/s RF sampling pipelined ADC with background calibration. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 482–483

    Google Scholar 

  35. Le Dortz, N., J.-P. Blanc, T. Simon, S. Verhaeren, E. Rouat, P. Urard, S. Le Tual, D. Goguet, C. Lelandais-Perrault, and P. Benabes. 2014. “A 1.62GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70 dBFS. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 386–388.

    Google Scholar 

  36. Lee, S., A.P. Chandrakasan, and H.-S. Lee. 2014. A 1GS/s 10 b 18.9 mW time-interleaved SAR ADC with background timing-skew calibration. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 2014, 384–385.

    Google Scholar 

  37. Yang, J., T.L. Naing, and R.W. Brodersen. 2010. A 1 GS/s 6 Bit 6.7 mW successive approximation ADC using asynchronous processing. IEEE Journal of Solid-State Circuits 45(8): 1469–1478.

    Article  Google Scholar 

  38. Kurosawa, N., H. Kobayashi, K. Maruyama, H. Sugawara, and K. Kobayashi. 2001. Explicit analysis of channel mismatch effects in time-interleaved ADC systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(3): 261–271.

    Article  Google Scholar 

  39. Tsai, T.-H., P.J. Hurst, and S.H. Lewis. 2006. Bandwidth mismatch and its correction in time-interleaved analog-to-digital converters. IEEE Transactions on Circuits and Systems II: Express Briefs 53(10): 1133–1137.

    Article  Google Scholar 

  40. Louwsma, S., E. van Tuijl, and B. Nauta. 2011. Time-interleaved track and holds. In Time-interleaved Analog-to-Digital Converters, 5–38. Netherlands: Springer.

    Google Scholar 

  41. El-Chammas, M., and B. Murmann. 2012. Background calibration of time-interleaved data converters. New York: Springer

    Google Scholar 

  42. Razavi, B. 2013. Design considerations for interleaved ADCs. IEEE Journal of solid-state circuits 48(8): 1806–1817.

    Article  Google Scholar 

  43. TLA7000 TLA7000 Logic Analyzers | Tektronix. http://www.tek.com/datasheet/tla7000/tla7000-series-data-sheet-0. Accessed 20 May 2014.

  44. MACOM Hybrid Junction (2 MHz–2 GHz) Datasheet. http://cdn.macom.com/datasheets/H-9.pdf. Accessed 20 May 2014.

  45. Marjorie Plisch, “Noise Power Ratio for the GSPS ADC. http://e2e.ti.com/cfs-file.ashx/__key/CommunityServer-Discussions-Components-Files/68/5775.ADC1xD1x00-NPR-for-E2E.pdf. Accessed 20 May 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, Y., Hegt, H., Doris, K., van Roermund, A.H.M. (2015). Implementations of the Parallel-Sampling ADC Architecture. In: Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-17680-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17680-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17679-6

  • Online ISBN: 978-3-319-17680-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics