Advertisement

Spectral Properties of Wigner Matrices

  • Benjamin SchleinEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2143)

Abstract

We review some recent results on the statistical properties of the spectrum of Wigner matrices. In particular, we discuss the local convergence of the density of states towards Wigner’s semicircle law, the rigidity of the eigenvalues of Wigner matrices and the universality of the local eigenvalue correlations.

Keywords

Local relaxation flow Random matrices Semicircle law Universality Wigner matrices 

Notes

Acknowledgements

This work is partially supported by the ERC Starting Grant MAQD-240518. It is a pleasure to thank CIRM and the Chair Jean-Morlet Nicola Kistler for the hospitality.

References

  1. 1.
    D. Bakry, M. Émery, Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/1984. Lecture Notes in Mathematics, vol. 1123 (Springer, Berlin, 1985), pp. 177–206Google Scholar
  2. 2.
    P. Bourgade, H.-T. Yau, J. Yin, Local circular law for random matrices (2012) (arXiv:1206.1449 [math.PR])Google Scholar
  3. 3.
    P. Bourgade, H.-T. Yau, J. Yin, The local circular law II: The edge case (2012) (arXiv:1206.3187 [math.PR])Google Scholar
  4. 4.
    C. Cacciapuoti, A. Maltsev, B. Schlein, Local Marchenko-Pastur law at the hard edge of sample covariance matrices. J. Math. Phys. 54(4), 043302, 13 (2013)Google Scholar
  5. 5.
    F.J. Dyson, Statistical theory of energy levels of complex systems, I, II, and III. J. Math. Phys. 3, 140–156, 157–165, 166–175 (1962)Google Scholar
  6. 6.
    F.J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Erdős, Universality of Wigner random matrices: A survey of recent results. Russ. Math. Surv. 66(3), 507–626 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Erdős, A. Knowles, Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12(7), 1227–1319 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Erdős, A. Knowles, Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303(2), 509–554 (2011)CrossRefGoogle Scholar
  10. 10.
    L. Erdős, B. Schlein, H.-T. Yau, Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Erdős, B. Schlein, H.-T. Yau, Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287(2), 641–655 (2009)CrossRefGoogle Scholar
  12. 12.
    L. Erdős, J. Ramírez, B. Schlein, T. Tao, V. Vu, H.-T. Yau, Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett. 17(4), 667–674 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    L. Erdős, B. Schlein, H.-T. Yau, Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN 3, 436–479 (2010)Google Scholar
  14. 14.
    L. Erdős, S. Péché, J.A. Ramírez, B. Schlein, H.-T. Yau, Bulk universality for Wigner matrices. Commun. Pure Appl. Math. 63(7), 895–925 (2010)Google Scholar
  15. 15.
    L. Erdős, B. Schlein, H.-T. Yau, Universality of random matrices and local relaxation flow. Invent. Math. 185(1), 75–119 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Erdős, H.-T. Yau, J. Yin, Universality for generalized Wigner matrices with Bernoulli distribution. J. Combin. 2(1), 15–81 (2011)CrossRefGoogle Scholar
  17. 17.
    L. Erdős, B. Schlein, H.-T. Yau, J. Yin, The local relaxation flow approach to universality of the local statistics for random matrices. Ann. Inst. H. Poincaré Probab. Stat. 48, 1–46 (2012)CrossRefGoogle Scholar
  18. 18.
    L. Erdős, H.-T. Yau, J. Yin, Bulk universality for generalized Wigner matrices. Probab. Theory Relat. Fields 154(1–2), 341–407 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Erdős, H.-T. Yau, J. Yin, Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    L. Erdős, A. Knowles, H.-T. Yau, Averaging fluctuations in resolvents of random band matrices. Ann. Henri Poincaré 41, 1–90 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Erdős, A. Knowles, H.-T. Yau, J. Yin, Delocalization and diffusion profile for random band matrices (2012) (arXiv:1205.5669 [math.PR])Google Scholar
  22. 22.
    L. Erdős, A. Knowles, H.-T. Yau, J. Yin, Spectral statistics of Erdős-Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues. Commun. Math. Phys. 314(3), 587–640 (2012)CrossRefGoogle Scholar
  23. 23.
    L. Erdős, A. Knowles, H.-T. Yau, J. Yin, The local semicircle law for a general class of random matrices. Electron. J. Probab 18(59), 1–58 (2013)MathSciNetGoogle Scholar
  24. 24.
    L. Erdős, A. Knowles, H.-T. Yau, J. Yin, Spectral statistics of Erdős–Rényi graphs I: Local semicircle law. Ann. Probab. 41(3B), 2279–2375 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Götze, A. Tikhomirov, On the rate of convergence to the semi-circular law (2011) (arXiv:1109.0611 [math.PR])Google Scholar
  26. 26.
    J. Gustavsson, Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Stat. 41(2), 151–178 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    D.L. Hanson, F.T. Wright, A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Stat. 42, 1079–1083 (1971)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    K. Johansson, Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215(3), 683–705 (2001)zbMATHCrossRefGoogle Scholar
  29. 29.
    J.O. Lee, J. Yin, A necessary and sufficient condition for edge universality of Wigner matrices (2012) (arXiv:1206.2251 [math.PR])Google Scholar
  30. 30.
    A. Maltsev, B. Schlein, Average density of states of Hermitian Wigner matrices. Adv. Math. 228(5), 2797–2836 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    V.A. Marčenko, L.A. Pastur, Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72(114), 507–536 (1967)Google Scholar
  32. 32.
    M.L. Mehta, Random Matrices (Academic, Amsterdam, 2004)zbMATHGoogle Scholar
  33. 33.
    N. Pillai, J. Yin, Universality of covariance matrices (2012) (arXiv:1110.2501 [math.PR])Google Scholar
  34. 34.
    A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207(3), 697–733 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    T. Tao, V. Vu, Random matrices: Universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298(2), 549–572 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Tao, V. Vu, Random matrices: Universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Tao, V. Vu, Random covariance matrices: Universality of local statistics of eigenvalues. Ann. Probab. 40(3), 1285–1315 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    T. Tao, V. Vu, Random matrices: Universality of local spectral statistics of non-Hermitian matrices (2012) (arXiv:1206.1893 [math.PR])Google Scholar
  39. 39.
    C.A. Tracy, H. Widom, Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    K. Wang, Random covariance matrices: Universality of local statistics of eigenvalues up to the edge. Random Matrices Theory Appl. 1(1), 1150005, 24 (2012)Google Scholar
  41. 41.
    E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62(2), 548–564 (1955)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    J. Yin, The local circular law III: General case (2012) (arXiv:1212.6599 [math.PR])Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations