Skip to main content

Spontaneous Replica Symmetry Breaking and Interpolation Methods for Complex Statistical Mechanics Systems

  • Chapter

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2143))

Abstract

The phenomenon of spontaneous replica symmetry breaking, for some mean field models for spin glasses, as the celebrated Sherrington-Kirkpatrick model, was discovered by Giorgio Parisi, in the frame of the so called “replica trick”, where the number of replicas goes to zero. Quite recently a rigorous treatment has been possible by using interpolation methods. Interpolation is a very powerful instrument. We give many examples of its use. In these lectures we give a short review about spontaneous replica symmetry breaking for an integer number of replicas, by exploiting the simple Random Energy Model. Moreover, we show how interpolation methods work in the treatment of neural networks models, in particular for the replica symmetric approximation. Finally, we apply interpolation methods to relate various instances of multi-species models, where for example mean field spin glasses are made to interact through a multi-partite interaction. As an application, we get a very simple control on the whole ergodic region for a class of neural networks. Some conclusion and hints for future developments are finally presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Agliari, A. Barra, F. Guerra, F. Moauro, A thermodynamical perspective of immune capabilities. J. Theor. Biol. 287, 48 (2011)

    Article  Google Scholar 

  2. M. Aizenman, J. Lebowitz, D. Ruelle, Some rigorous results on the Sherrington-Kirkpatrick model of spin glasses. Commun. Math. Phys. 112, 3–20 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Albeverio, B. Tirozzi, B. Zegarlinski, Rigorous results for the free energy in the Hopfield model. Commun. Math. Phys. 150, 337 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. D.J. Amit, Modeling Brain Function: The World of Attractor Neural Network (Cambridge Univerisity Press, Cambridge, 1992)

    Google Scholar 

  5. D.J. Amit, H. Gutfreund, H. Sompolinsky, Spin glass model of neural networks. Phys. Rev. A 32, 1007–1018 (1985)

    Article  MathSciNet  Google Scholar 

  6. D.J. Amit, H. Gutfreund, H. Sompolinsky, Storing infinite numbers of patterns in a spin glass model of neural networks. Phys. Rev. Lett. 55, 1530–1533 (1985)

    Article  Google Scholar 

  7. A. Auffinger, W.-K. Chen, The Parisi formula has a unique minimizer. Commun. Math. Phys. 335, 1429–1444 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Barra, P. Contucci, Toward a quantitative approach to migrants integration. Europhys. Lett. 89, 68001 (2010)

    Article  Google Scholar 

  9. A. Barra, F. Guerra, About the ergodic regime in the analogical Hopfield neural networks: Moments of the partition function. J. Math. Phys. 50, 125217 (2008)

    Article  MathSciNet  Google Scholar 

  10. A. Barra, F. Guerra, Constraints for the Order Parameters in Analogical Neural Networks, ed. by S. Vitolo (Percorsi d’Ateneo, Salerno, 2008)

    Google Scholar 

  11. A. Barra, G. Genovese, F. Guerra, The replica symmetric approximation of the analogical neural network. J. Stat. Phys. 140, 784–796 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Barra, G. Genovese, F. Guerra, Equilibrium statistical mechanics of bipartite spin systems. J. Phys. A 44, 245002 (2011)

    Article  MathSciNet  Google Scholar 

  13. A. Barra, G. Genovese, F. Guerra, D. Tantari, How glassy are neural networks? J. Stat. Mech. P07009 (2012)

    Google Scholar 

  14. A. Barra, G. Genovese, F. Guerra, D. Tantari, A solvable mean field model of a Gaussian spin glass. J. Phys. A Math. Theor. 47, 155002 (2014)

    Article  MathSciNet  Google Scholar 

  15. A. Barra, P. Contucci, E. Mingione, D. Tantari, Multi-species mean-field spin-glasses. Rigorous results. Annales Henri Poincaré 16, 691–708 (2014)

    Article  MathSciNet  Google Scholar 

  16. A. Bovier, Self-averaging in a class of generalized Hopfield models. J. Phys. A 27, 7069–7077 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Bovier, Statistical Mechanics of Disordered Systems. A Mathematical Perspective (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  18. A. Bovier, V. Gayrard, An almost sure central limit theorem for the Hopfield model. Markov Proc. Relat. Fields 3, 151–173 (1997)

    MATH  MathSciNet  Google Scholar 

  19. A. Bovier, B. Niederhauser, The spin-glass phase-transition in the Hopfield model with p-spin interactions. Adv. Theor. Math. Phys. 5, 1001–1046 (2001)

    MATH  MathSciNet  Google Scholar 

  20. A. Bovier, A.C.D. van Enter, B. Niederhauser, Stochastic symmetry-breaking in a Gaussian Hopfield-model. J. Stat. Phys. 95, 181–213 (1999)

    Article  MATH  Google Scholar 

  21. P. Contucci, I. Gallo, Bipartite mean field spin systems. Existence and solution. Math. Phys. Electron. J. 14, 1–22 (2008)

    MathSciNet  Google Scholar 

  22. B. Derrida, Random-energy model: An exactly solvable model of disordered systems. Phys. Rev. B 24, 2613 (1981)

    Article  MathSciNet  Google Scholar 

  23. S. Ghirlanda, F. Guerra, General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A 31, 9149 (1998)

    MATH  MathSciNet  Google Scholar 

  24. F. Guerra, About the overlap distribution in mean field spin glass models. Int. J. Mod. Phys. B 10, 1675–1684 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Guerra, Sum rules for the free energy in the mean field spin glass model, in Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects. Fields Institute Communications, vol. 30 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  26. F. Guerra, Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. F. Guerra, An introduction to mean field spin glass theory: Methods and results, in Mathematical Statistical Physics, ed. by A. Bovier et al. (Elsevier, Oxford, 2006), pp. 243–271

    Google Scholar 

  28. F. Guerra, F.L. Toninelli, The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71–79 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. D.O. Hebb, Organization of Behaviour (Wiley, New York, 1949)

    Google Scholar 

  30. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  31. S. Kirkpatrick, D. Sherrington, Infinite-ranged models of spin-glasses. Phys. Rev. B17, 4384–4403 (1978)

    Article  Google Scholar 

  32. M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  33. D. Panchenko, The free energy in a multi-species Sherrington-Kirkpatrick model (2013)

    Book  Google Scholar 

  34. G. Parisi, A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A13, L-115 (1980)

    Google Scholar 

  35. G. Parisi, Complex systems: A physicist’s viewpoint. Phys. A 263, 557 (1999)

    Article  MathSciNet  Google Scholar 

  36. L. Pastur, M. Shcherbina, The absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model. J. Stat. Phys. 62, 1–26 (1991)

    Article  MathSciNet  Google Scholar 

  37. L. Pastur, M. Scherbina, B. Tirozzi, The replica symmetric solution of the Hopfield model without replica trick. J. Stat. Phys. 74, 1161–1183 (1994)

    Article  MATH  Google Scholar 

  38. L. Pastur, M. Scherbina, B. Tirozzi, On the replica symmetric equations for the Hopfield model. J. Math. Phys. 40, 3930–3947 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975)

    Article  Google Scholar 

  40. M. Talagrand, Rigourous results for the Hopfield model with many patterns. Probab. Theory Relat. Fields 110, 177–276 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Talagrand, Exponential inequalities and convergence of moments in the replica-symmetric regime of the Hopfield model. Ann. Probab. 38, 1393–1469 (2000)

    Article  MathSciNet  Google Scholar 

  42. M. Talagrand, Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models (Springer, New York, 2003)

    Google Scholar 

  43. M. Talagrand, The Parisi formula. Ann. Math. 163, 221–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Guerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guerra, F. (2015). Spontaneous Replica Symmetry Breaking and Interpolation Methods for Complex Statistical Mechanics Systems. In: Gayrard, V., Kistler, N. (eds) Correlated Random Systems: Five Different Methods. Lecture Notes in Mathematics, vol 2143. Springer, Cham. https://doi.org/10.1007/978-3-319-17674-1_2

Download citation

Publish with us

Policies and ethics