Skip to main content

Active Gases and Species

  • Chapter
  • First Online:
Experimental Innovations in Surface Science
  • 2289 Accesses

Abstract

Atomic hydrogen is employed for research in the surface science field as a reagent for rapidly producing chemisorbed hydrogen on semiconductor surfaces and also on metal surfaces that do not readily dissociate molecular H2. The surface chemistry of atomic hydrogen has been investigated as early as the work of Langmuir (J Am Chem Soc 34:1310, 1912, J Am Chem Soc 37:417, 1915) who first produced it on a hot tungsten filament.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Langmuir, J. Am. Chem. Soc. 34, 1310 (1912)

    Article  Google Scholar 

  2. I. Langmuir, J. Am. Chem. Soc. 37, 417 (1915)

    Article  Google Scholar 

  3. J.N. Smith Jr, W.L. Fite, J. Chem. Phys. 37, 898 (1962)

    Article  ADS  Google Scholar 

  4. D. Brennan, P.C. Fletcher, Proc. Roy. Soc. London Ser. A 250, 389 (1959)

    Article  ADS  Google Scholar 

  5. T.W. Hickmott, J. Chem. Phys. 32, 810 (1960)

    Article  ADS  Google Scholar 

  6. U. Bischler and E. Bertel, J. Vac. Sci. Technol. A11, 458 (1993). W capillary for this source may be obtained from Metallwerke Plansee GmbH, A-6600 Reutte/Tirol, Austria, Tele: 43 5672 70 0; FAX: 43 5672 70 500. The entire source is available from Physikalisches Buro Stein-muller GmbH, Rinnerstr. 16d, A-6074 Rinn/Aldrans, Austria

    Google Scholar 

  7. K.H. Bornscheuer, S.R. Lucas, W.J. Choyke, W.D. Partlow, J.T. Yates Jr, J. Vac. Sci. Technol. A11, 2822 (1993)

    Article  ADS  Google Scholar 

  8. B.A. Von Gottwald, Vakuum Tech. 22, 106 (1973)

    Google Scholar 

  9. C.T. Campbell, S.M. Valone, J. Vac. Sci. Technol. A3, 408 (1985)

    Article  ADS  Google Scholar 

  10. Spiral W filaments in standard or special dimensions may be obtained from CM Furnaces Inc., 103 Dewey Street, Bloomfield, NJ 07003

    Google Scholar 

  11. H. Wise, B.J. Wood, Adv. At. Mol. Phys. 3, 291 (1967)

    Article  ADS  Google Scholar 

  12. J.P. Toennies, W. Welz, G. Wolf, J. Chem. Phys. 71, 614 (1979)

    Article  ADS  Google Scholar 

  13. B.E. Koehler, C.H. Mak, D.A. Arthur, P.A. Coon, S.M. George, J. Chem. Phys. 89, 1709 (1988)

    Article  ADS  Google Scholar 

  14. V.G. Luppov, M. Mertig, T. Roser, B.S. van Guilder, B. Vuaridel, YuM Melnik, A.F. Prudkoglyad, Rev. Sci. Instrum. 62, 2738 (1991)

    Article  ADS  Google Scholar 

  15. B. Van Zyl, M.W. Gealy, Rev. Sci. Instrum. 57, 359 (1986). It is interesting to note that in these studies, the maximum in H2 dissociation probability is not reached until tungsten temperatures above 2400 K are employed. This may be due to the presence of gas phase collisions here, where collisionless conditions generally apply in sources used for surface studies in ultrahigh vacuum

    Google Scholar 

  16. H. Koschmieder, V. Raible, Rev. Sci. Instrum. 46, 536 (1975)

    Article  ADS  Google Scholar 

  17. A. Hershcovitch, A. Kponou, and TO. Niinikoski, Rev. Sci. Instrum. 58, 547 (1987)

    Google Scholar 

  18. K.C. Harvey, C. Fehrenbach Jr, Rev. Sci. Instrum. 54, 1117 (1983)

    Article  ADS  Google Scholar 

  19. M. Eisenstadt, Rev. Sci. Instrum. 36, 1878 (1965)

    Article  ADS  Google Scholar 

  20. J. Slevin, W. Stirling, Rev. Sci. Instrum. 52, 1780 (1981)

    Article  ADS  Google Scholar 

  21. B.J. Wood, H. Wise, J. Phys. Chem. 66, 1049 (1962)

    Article  Google Scholar 

  22. W.W. MacAlpine, R.O. Schildknecht, in Proceedings of IRE, 2099 (1959)

    Google Scholar 

  23. C.D. Stinespring, A. Freedman, C.E. Colb, J. Vac. Sci. Technol. A4, 1946 (1986)

    Article  ADS  Google Scholar 

  24. C.E. Kolb, M. Kaufman, J. Phys. Chem. 76, 947 (1972)

    Article  Google Scholar 

  25. Microwave sources are available from Opthos Instruments, Inc., 17805 Caddy Drive, Rockville, MD 20855

    Google Scholar 

  26. S. Sibener, R.J. Buss, C.Y. Ng, Y.T. Lee, Rev. Sci. Instrum. 51, 167 (1980)

    Article  ADS  Google Scholar 

  27. C.D. Stinespring, A. Freedman, Appl. Phys. Lett. 48, 718 (1986)

    Article  ADS  Google Scholar 

  28. A. Freedman, J. Appl. Phys. 75, 3112 (1994)

    Article  ADS  Google Scholar 

  29. G.N. Robinson, A. Freedman, R.L. Graham, Langmuir 11, 2600 (1995)

    Article  Google Scholar 

  30. A. Freedman, C.D. Stinespring, J. Phys. Chem. 96, 2253 (1992)

    Article  Google Scholar 

  31. H. Bonzel, A.M. Bradshaw, G. Ertl, Physics and Chemistry of Alkali Metal Adsorption (Elsevier, Amsterdam, 1989)

    Google Scholar 

  32. J.B. Taylor, I. Langmuir, Phys. Rev. 44, 423 (1933)

    Article  ADS  Google Scholar 

  33. Getter sources may be obtained from SAES Getters S.p.A., Head Office, Via Gallarate, 215, 20151 Milano, Italy. USA Offices: SAES Getters/U.S.A. Inc., 1122 E. Cheyenne Mtn. Blvd., Colorado Springs, CO 80906

    Google Scholar 

  34. F. Ricca, P. Delia, Porta. Vacuum 10, 215 (1960)

    Article  Google Scholar 

  35. D.L. Schaefer, Rev. Sci. Instrum. 41, 274 (1970)

    Article  ADS  Google Scholar 

  36. L.V. Hau, J.A. Golovchenko, M.M. Burns, Rev. Sci. Instrum. 65, 3746 (1994)

    Article  ADS  Google Scholar 

  37. F. Kalos, A.E. Grosser, Rev. Sci. Instrum. 40, 804 (1969)

    Article  ADS  Google Scholar 

  38. K.N. Walzl, C.F. Koerting, I.M. Xavier, A. Kuppermann, J. Chem. Phys. 86, 88 (1987)

    Article  ADS  Google Scholar 

  39. F.A. Elder, C. Giese, B. Steiner, M. Inghram, J. Chem. Phys. 36, 3292 (1962)

    Article  ADS  Google Scholar 

  40. P. Chen, S.D. Colson, W.A. Chupta, J.A. Berson, J. Phys. Chem. 90, 2319 (1986)

    Article  Google Scholar 

  41. J. Dyke, N. Jonathan, E. Lee, A. Morris, J. Chem. Soc., Faraday II 72,1385 (1976)

    Google Scholar 

  42. X.-D. Peng, R. Viswanathan, G.H. Smudde Jr, P.C. Stair, Rev. Sci. Instrum. 63, 3930 (1992)

    Article  ADS  Google Scholar 

  43. Alltech Assoc., Inc. 2051 Waukegan Rd., Deerfield, IL 60015

    Google Scholar 

  44. R. Renaud, L.C. Leitch, Can. J. Chem. 32, 545 (1954). Proper caution should be employed working with dimethyldiazine as it is a carcinogenic agent

    Google Scholar 

  45. D.D. Berkley, A.M. Goldman, I. Maps, B.R. Johnson, J. Morton, T. Wang, Rev. Sci. Instrum. 60, 3769 (1989)

    Article  ADS  Google Scholar 

  46. D.D. Berkley, B.R. Johnson, N. Anand, K.M. Beauchamp, L.E. Conroy, A.M. Goldman, K. Mauersberger, M.L. Mecartney, J. Morton, M. Tuominen, Y.-J. Zhang, Appl. Phys. Lett. 53, 1973 (1988)

    Article  ADS  Google Scholar 

  47. E. Coleman, T. Siegrist, D.A. Mixon, P.L. Trevor, D.J. Trevor, J. Vac. Sci. Technol. A9, 2408 (1991)

    Article  ADS  Google Scholar 

  48. G.A. Cook, A.D. Kiffer, C.V. Klumpp, A.H. Malik, L.A. Spence, Advances in Chemistry Series 21 (American Chemical Society, Washington, DC, 1959), p. 44

    Google Scholar 

  49. Matheson Gas Data Book, 6th ed. (Matheson Gas Products, Secaucus, NJ, 1980), pp. 574–577

    Google Scholar 

  50. Aldrich #24,982-3; CAS (7631-86-9). Sold by Aldrich Chemical Co., P.O. Box 2060, Milwaukee, WI 53201

    Google Scholar 

  51. Fomblin is a registered trademark of Montedison Specialty Chemicals, Milano, Italy

    Google Scholar 

  52. Krytox is a registered trademark of E.I. dupont De Nemours and Co., Inc., Wilmington, DE

    Google Scholar 

  53. S. Hosokawa, S. Ichimura, Rev. Sci. Instrum. 62, 1614 (1991)

    Article  ADS  Google Scholar 

  54. M. Griggs, S. Kaye, Rev. Sci. Instrum. 39, 1685 (1968)

    Article  ADS  Google Scholar 

  55. S. Anderson, K. Mauersberger, Rev. Sci. Instrum. 52, 1025 (1981)

    Article  ADS  Google Scholar 

  56. L. Andrews, R.C. Spiker Jr, J. Phys. Chem. 76, 3208 (1972)

    Article  Google Scholar 

  57. J.T. Kucera, J.D. Perkins, K. Uwai, J.M. Graybeal, T.P. Orlando, Rev. Sci. Instrum. 62, 1630 (1991)

    Article  ADS  Google Scholar 

  58. D.H. Byers, B.E. Saltzman, Advances in Chemistry Series, vol. 21 (American Chemical Society, Washington, DC, 1959), p. 93

    Google Scholar 

  59. V. Matijasevic, E.L. Garwin, R.H. Hammond, Rev. Sci. Instrum. 61, 1747 (1990)

    Article  ADS  Google Scholar 

  60. V.S. Smentkowski, J.T. Yates Jr, J. Vac. Sci. Technol., A 12, 219 (1994)

    Article  ADS  Google Scholar 

  61. V.S. Smentkowski, J.T. Yates Jr, J. Vac. Sci. Technol., A 12, 224 (1994)

    Article  ADS  Google Scholar 

  62. W.T. Foley, P.A. Giguere, Hydrogen Peroxide and its analogues II. Phase equilibrium in the system hydrogen peroxide-water. Can. J. Chem. 29, 123 (1951)

    Article  Google Scholar 

  63. M.J. Loeffler, B.D. Teolis, R.A. Baragiola, J. Phys. Chem. B 110, 6911 (2006)

    Article  Google Scholar 

  64. CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, 2003–2004), Section 6-71

    Google Scholar 

  65. N. Izyumskaya, V. Avrutin, W. Schoch, A. El-Shaer, F. Reuβ, Th. Gruber, A. Waag, J. Crystal Growth, 269, 356 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Yates Jr. .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yates, J.T. (2015). Active Gases and Species. In: Experimental Innovations in Surface Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17668-0_40

Download citation

Publish with us

Policies and ethics