Skip to main content

Liner Shipping Fleet Repositioning with Cargo

  • Chapter

Part of the book series: Operations Research/Computer Science Interfaces Series ((ORCS,volume 57))

Abstract

Although the model of the LSFRP presented in Chap. 5 is useful for certain types of repositionings, taking into account the flows of containers through the network is important for ensuring the repositioning plans that are generated do not cause significant disruptions to the on-time delivery of containers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the terms visitation and node interchangeably.

  2. 2.

    We ignore container types, as they are not relevant.

  3. 3.

    Note that the solution generated may be temporally infeasible.

  4. 4.

    Each iteration represents the evaluation of the objective function.

References

  1. Abuhamdah, A.: Experimental result of late acceptance randomized descent algorithm for solving course timetabling problems. Int. J. Comput. Sci. Netw. Secur. 10, 192–200 (2010)

    Google Scholar 

  2. Ansotegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) Principles and Practice of Constraint Programming (CP-09), Lisbon. Volume 5732 of Lecture Notes in Computer Science, pp. 142–157. Springer (2009)

    Google Scholar 

  3. Brouer, B.D., Alvarez, J.F., Plum, C.E.M., Pisinger, D., Sigurd, M.M.: A base integer programming model and benchmark suite for liner shipping network design. Transp. Sci. 48(2), 281–312 (2012)

    Article  Google Scholar 

  4. Brouer, B.D., Dirksen, J., Pisinger, D., Plum, C.E.M., Vaaben, B.: The vessel schedule recovery problem (VSRP) – a MIP model for handling disruptions in liner shipping. Eur. J. Oper. Res. 224(2), 362–374 (2013)

    Article  Google Scholar 

  5. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling (PATAT-08), Montreal (2008)

    Google Scholar 

  6. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Technical report CSM-192, University of Stirling (2012)

    Google Scholar 

  7. Google: Google OR-tools. http://code.google.com/p/or-tools/ (2012)

  8. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  9. IBM: IBM CPLEX reference manual and user manual. V12.4 (2012)

    Google Scholar 

  10. ISO/IEC: Information Technology – Programming Languages – C++, Third Edition. ISO/IEC 14882:2011, International Organization for Standardization/International Electrotechnical Commission, Geneva (2011)

    Google Scholar 

  11. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; Part I, graph partitioning. Oper. Res. 37(6), 865–892 (1989)

    Article  Google Scholar 

  12. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC – instance-specific algorithm configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence (ECAI-10), Lisbon. Volume 215 of Frontiers in Intelligence and Applications, pp. 751–756 (2010)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  14. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  Google Scholar 

  15. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Kluwer Academic, Boston (2003)

    Google Scholar 

  16. Ozcan, E., Bykov, Y., Birben, M., Burke, E.K.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation (CEC-09), Trondheim, pp. 997–1004. IEEE (2009)

    Google Scholar 

  17. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

    Article  Google Scholar 

  18. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57(10), 1143–1160 (2005)

    Article  Google Scholar 

  19. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics. Pearson, Upper Saddle River/Harlow (2012)

    Google Scholar 

  20. Taheri, J., Zomaya, A.Y.: A simulated annealing approach for mobile location management. Comput. Commun. 30(4), 714–730 (2007)

    Article  Google Scholar 

  21. Tierney, K., Jensen, R.M.: A node flow model for the inflexible visitation liner shipping fleet repositioning problem with cargo flows. In: Pacino, D., Voß, S., Jensen, R.M. (eds.) Computational Logistics, Copenhagen. Volume 8197 of Lecture Notes in Computer Science, pp. 18–34. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  22. Verstichel, J., Berghe, G.V.: A late acceptance algorithm for the lock scheduling problem. Logist. Manag. 457–478 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tierney, K. (2015). Liner Shipping Fleet Repositioning with Cargo. In: Optimizing Liner Shipping Fleet Repositioning Plans. Operations Research/Computer Science Interfaces Series, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-17665-9_6

Download citation

Publish with us

Policies and ethics