Skip to main content

Femtosecond Mode-Locked Semiconductor Disk Lasers

  • Chapter
  • First Online:
Book cover Ultrashort Pulse Laser Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 195))

  • 3279 Accesses

Abstract

The generation of ultrashort pulses with passively mode-locked semiconductor disk lasers (SDLs) incorporating only an optically-pumped surface-emitting semiconductor gain element and a semiconductor saturable absorber mirror (SESAM) is presented. The optimum parameters for nearly Fourier-limited femtosecond pulses in single- or multiple-pulse regimes are investigated. On the basis of the experience gained a harmonically mode-locked SDL emitting sub-200 fs pulses at a very high repetition rate of 92 GHz and a fundamentally mode-locked SDL generating practically chirpfree pulses with durations close to 100 fs at a rate of 5 GHz are demonstrated in the 1-µm wavelength range. The latter set a record for shortest pulse durations achieved directly from any fundamentally or harmonically mode-locked semiconductor laser. Overall, the results are a further step of modelocked SDLs in becoming useful compact and low-cost ultrashort-pulse sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Yoshida, Y. Yamashita, M. Kuwabara, H. Kan, A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode. Nat. Photonics 2, 551–554 (2008)

    Article  Google Scholar 

  2. K.J. Linden, Single mode, short cavity, Pb-salt diode lasers operating in the 5, 10, and 30 μm spectral regions. IEEE J. Quantum Electron. 21, 391–394 (1985)

    Article  ADS  Google Scholar 

  3. R. Gebs, P. Klopp, G. Klatt, T. Dekorsy, U. Griebner, A. Bartels, Time-domain THz spectroscopy based on asynchronous optical sampling with a femtosecond semiconductor disk laser. Electron. Lett. 46, 75 (2010)

    Article  Google Scholar 

  4. F. Quinlan, G. Ycas, S. Osterman, S.A. Diddams, A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration. Rev. Sci. Instr. 81, 063105 (2010)

    Article  ADS  Google Scholar 

  5. U. Keller, A.C. Tropper, Passively modelocked surface-emitting semiconductor lasers. Phys. Rep. 429, 67–120 (2006)

    Article  ADS  Google Scholar 

  6. S.L. Chuang, Optoelectronic Devices (Wiley, New York, 1995)

    Google Scholar 

  7. C.W. Wilmsen, H. Temkin, L.A. Coldren (eds.), Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  8. M. Kuznetsov, F. Hakimi, R. Sprague, A. Mooradian, Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999)

    Article  Google Scholar 

  9. C. Steven, K. Contag, M. Larionov, A. Giesen, H. Hügel, A 1-kW CW thin disk laser. J. Sel. Top. Quantum Electron. 6, 650–657 (2000)

    Article  Google Scholar 

  10. J.L. Chilla, S.D. Butterworth, A. Zeitschel, J.P. Charles, A.L. Caprara, M.K. Reed, L. Spinelli, in High power optically pumped semiconductor lasers, ed. by R. Scheps, H.J. Hoffman. Solid State Lasers XIII: Technology and Devices. Proc. SPIE 5332, 143–150 (2004)

    Google Scholar 

  11. B. Rudin, A. Rutz, M. Hoffmann, D.J.H.C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, U. Keller, Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Opt. Lett. 33, 2719–2721 (2008)

    Article  ADS  Google Scholar 

  12. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B 16, 46–56 (1999)

    Article  ADS  Google Scholar 

  13. M.E. Barnes, Z. Mihoubi, K.G. Wilcox, A.H. Quarterman, I. Farrer, D.A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, A.C. Tropper, Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation. Opt. Express 18, 21330–21341 (2010)

    Article  ADS  Google Scholar 

  14. S. Hoogland, S. Dhanjal, A.C. Tropper, J.S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, U. Keller, Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photon. Technol. Lett. 12, 1135–1137 (2000)

    Article  ADS  Google Scholar 

  15. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A.C. Tropper, U. Keller, Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers. Appl. Phys. B 75, 445–451 (2002)

    Article  ADS  Google Scholar 

  16. A. Garnache, S. Hoogland, A.C. Tropper, I. Sagnes, G. Saint-Girons, J.S. Roberts, Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power. Appl. Phys. Lett. 80, 3892–3894 (2002)

    Article  ADS  Google Scholar 

  17. S. Hoogland, A. Garnache, I. Sagnes, J.S. Roberts, A.C. Tropper, 10-GHz Train of Sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser. IEEE Photon. Technol. Lett. 17, 267–269 (2005)

    Article  ADS  Google Scholar 

  18. S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, Y. Ogawa, Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode. Opt. Lett. 19, 834–836 (1994)

    Article  ADS  Google Scholar 

  19. E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Yu. M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, N.N. Ledentsov, High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser. Appl. Phys. Lett. 87, 081107 (2005)

    Google Scholar 

  20. P. Klopp, F. Saas, M. Zorn, M. Weyers, U. Griebner, 290-fs pulses from a semiconductor disk laser. Opt. Express 16, 5770–5775 (2008)

    Article  ADS  Google Scholar 

  21. K.G. Wilcox, Z. Mihoubi, G.J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D.A. Ritchie, A. Tropper, Ultrafast optical Stark mode-locked semiconductor laser. Opt. Lett. 33, 2797 (2008)

    Article  ADS  Google Scholar 

  22. P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, G. Erbert, Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Opt. Express 17, 10820 (2009)

    Article  ADS  Google Scholar 

  23. P. Klopp, U. Griebner, M. Zorn, M. Weyers, Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser. Appl. Phys. Lett. 98, 071103 (2011)

    Article  ADS  Google Scholar 

  24. D. Lorenser, J.H.C. Maas, H.J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebeling, U. Keller, 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power. IEEE J. Quantum Electron. 42, 838–847 (2006)

    Article  ADS  Google Scholar 

  25. F.X. Kärtner, I.D. Jung, U. Keller, Soliton mode-locking with saturable absorbers. IEEE J. Selected Topics Quantum Electron. 2, 540–556 (1996)

    Article  Google Scholar 

  26. U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, M. Weyers, X-ray diffraction spot mapping—a tool to study structural properties of semiconductor disk laser devices. Phys. Stat. Sol. (a) 204, 2753–2759 (2007)

    Google Scholar 

  27. F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, M. Weyers, Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser. Appl. Phys. Lett. 89, 141107 (2006)

    Article  ADS  Google Scholar 

  28. M.J. Lederer, B. Luther-Davies, H.H. Tan, C. Jagadish, N.N. Akhmediev, J.M. Soto-Crespo, Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror. J. Opt. Soc. Am. B 16, 895–904 (1999)

    Article  ADS  Google Scholar 

  29. J.W. Tomm, V. Strelchuk, A. Gerhardt, U. Zeimer, M. Zorn, H. Kissel, M. Weyers, J. Jimenez, Properties of As+-implanted and annealed GaAs and InGaAs quantum wells: Structural and band-structure modifications. J. Appl. Phys. 95, 1122–1126 (2004)

    Article  ADS  Google Scholar 

  30. M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, M. Weyers, Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE. J. Crystal Growth 310, 5187–5190 (2008)

    Article  ADS  Google Scholar 

  31. M. Haiml, R. Grange, U. Keller, Optical characterization of semiconductor saturable absorbers. Appl. Phys. B 79, 331–339 (2004)

    Article  Google Scholar 

  32. F. Saas, V. Talalaev, U. Griebner, J.W. Tomm, M. Zorn, A. Knigge, M. Weyers, Optically pumped semiconductor disk laser with graded and step indices. Appl. Phys. Lett. 89, 151120 (2006)

    Article  ADS  Google Scholar 

  33. M. Moenster, U. Griebner, W. Richter, G. Steinmeyer, Resonant saturable absorber mirrors for dispersion control in ultrafast lasers. IEEE J. Quantum Electron. 43, 174–181 (2007)

    Article  ADS  Google Scholar 

  34. P. Klopp, F. Saas, U. Griebner M. Zorn, M. Weyers, Passively mode-locked semiconductor disk laser generating sub-300-fs pulses. CLEO/QELS 2008, CThF6

    Google Scholar 

  35. M. Hoffmann, O.D. Sieber, D.J.H.C. Maas, V.J. Wittwer, M. Golling, T. Südmeyer, U. Keller, Experimental verification of soliton-like pulseshaping mechanisms in passively mode-locked VECSELs. Opt. Express 18, 10143–10153 (2010)

    Article  ADS  Google Scholar 

  36. E.J. Saarinen, R. Herda, O.G. Okhotnikov, Dynamics of pulse formation in mode-locked semiconductor disk lasers. J. Opt. Soc. Am. B 24, 2784–2790 (2007)

    Article  ADS  Google Scholar 

  37. A.H. Quarterman, K.G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S.P. Elsmere, I. Farrer, D.A. Ritchie, A. Tropper, A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses. Nat. Photonics 3, 729 (2009)

    Google Scholar 

  38. S. Arahira. S. Oshiba, Y. Matsui, T. Kunii, Y. Ogawa, 500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser. Appl. Phys. Lett. 64, 1917–1919 (1994)

    Google Scholar 

  39. K.G. Wilcox, A.H. Quarterman, H. Beere, D.A. Ritchie, A.C. Tropper, High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser. IEEE Photon. Technol. Lett. 22, 1021–1023 (2010)

    Article  ADS  Google Scholar 

  40. P. Dupriez, C. Finot, A. Malinowski, J.K. Sahu, J. Nilsson, D.J. Richardson, K.G. Wilcox, H.D. Foreman, A.C. Tropper, High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs. Opt. Express 14, 9611–9616 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Griebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griebner, U., Klopp, P., Zorn, M., Weyers, M. (2016). Femtosecond Mode-Locked Semiconductor Disk Lasers. In: Nolte, S., Schrempel, F., Dausinger, F. (eds) Ultrashort Pulse Laser Technology. Springer Series in Optical Sciences, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-17659-8_3

Download citation

Publish with us

Policies and ethics