Skip to main content

Femtosecond Lentotomy: A Prospect for a Treatment to Regain the Accommodation Ability

  • Chapter
  • First Online:
Ultrashort Pulse Laser Technology

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 195))

Abstract

Presbyopia is the age-related loss of the accommodation of the lens of the eye which affects every person in the fifth decade of life. When presbyopia occurs, continuous growth of the lens fibers results in sclerosis of the lens tissue which is accompanied by a decrease in flexibility. Initially, this impairs the dynamic adaptation from far- to short-sightedness, until ultimately it fails completely. Currently, the conventional approach to compensate for the loss of accommodation is the use of reading glasses for short-sightedness. Although new surgical treatment methods have been developed, so far none of them allow a dynamic accommodation. An alternative approach is the restoration of the flexibility of the lens using a procedure based on the non-linear interaction of ultrafast laser pulses and tissue. The non-linearity of the photodisruption effect can be used to create micro-incisions inside the lens without opening the eye globe. These defined gliding planes thereby restore the lost flexibility. This treatment method, known as fs-lentotomy, enables regeneration of real dynamic accommodation. The fs-lentotomy treatment technique as well as the effect of laser irradiation on the tissue was evaluated. For the first time, various 3-D structures for gliding planes were successfully generated in experiments with human donor lenses of different ages. An average increase in anterior-posterior lens thickness of 100 μm accompanied by a decrease of equatorial lens diameter was observed as a direct consequence of fs-lentotomy. This is attributed to increased flexibility, as the force of the capsule bag deforms the lens tissue to a higher degree. Using the Fisher’s spinning test, a 16 % average flexibility increase was ascertained in human donor lenses. The control of the position of the gliding planes was found to be extremely important for safe and successful surgery. In addition to the experiments, calculations of the biomechanics during accommodation were carried out using the finite element method. This indicated that the achievable increase in flexibility of the lens depends on the applied cutting pattern. In vivo experiments with the lab prototype surgical instrument showed that laser incisions inside a rabbit eye lens caused no growing opacification (cataract ) over a 6 month follow-up period. However, the incisions were still detectable using Scheimpflug imaging and histopathological techniques, although the visibility of the incisions was declining. No distinctive features were observed upon evaluating thermal exposure of the rabbit retina during fs-lentotomy. It is expected that no damage will occur in the human retina, as exposure of the human retina is lower than exposure of the rabbit retina, due to the larger human eye bulb. The basic scientific investigations of fs-lentotomy show that it is possible to recover the flexibility of ex vivo human donor lenses. Consequently, the requirements for regaining a dynamic accommodation exist. Furthermore, no side effects were observed during the wound healing process and during a 6 months follow-up period. Based on the presented findings, it can be concluded that fs-lentotomy has the potential to become a well suited procedure for the treatment of presbyopia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Helmholtz, in Helmholtz’s Treatise on Physiological Optics, ed. by J. Southall. Mechanism of Accommodation (Dover, New York, 1909), pp. 143–173

    Google Scholar 

  2. A. Glasser, P.L. Kaufman, The mechanism of accommodation in primates. Ophthalmology 106, 863–872 (1999)

    Article  Google Scholar 

  3. E. Fincham, The mechanism of accommodation. Br. J. Ophthalmol. 8, 7–80 (1937)

    Google Scholar 

  4. K.R. Heys, S.L. Cram, R.J.W. Truscott, Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol. Vis. 10, 956–963 (2004)

    Google Scholar 

  5. H.A. Weeber, G. Eckert, W. Pechhold, R.G.L. van der Heijde, Stiffness gradient in the crystalline lens. Graefes Arch. Clin. Exp. Ophthalmol. 245, 1357–1366 (2007)

    Article  Google Scholar 

  6. D.A. Atchison, Accommodation and presbyopia. Ophthalmic Physiol. Opt. 15, 255–272 (1995)

    Article  Google Scholar 

  7. A. Glasser, M.C. Campbell, Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision. Res. 39, 1991–2015 (1999)

    Article  Google Scholar 

  8. S.A. Strenk, L.M. Strenk, S. Guo, Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters. J. Cataract Refract. Surg. 32, 1792–1798 (2006)

    Article  Google Scholar 

  9. A. Glasser, M.C. Campbell, Presbyopia and the optical changes in the human crystalline lens with age. Vision. Res. 38, 209–229 (1998)

    Article  Google Scholar 

  10. R.A. Schachar, Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann. Ophthalmol. 24(445–7), 452 (1992)

    Google Scholar 

  11. G.U. Auffarth, H.B. Dick, Multifocal intraocular lenses: a review. Ophthalmologe 98, 127–137 (2001)

    Article  Google Scholar 

  12. D. Azar, M. Chang, C. Kloek, S. Zafar, K. Sippel, S. Jain, in Hyperopia and Presbyopia, eds. by K. Tsubota, B.B. Wachler, D. Azar, D. Koch. Monovision Refractive Surgery for Presbyopia (Marcel Dekker Inc., New York, 2003), pp. 189–208

    Google Scholar 

  13. M. Küchle, B. Seitz, A. Langenbucher, G.C. Gusek-Schneider, P. Martus, N.X. Nguyen, Group TEAILS. Comparison of 6-month results of implantation of the 1CU accommodative intraocular lens with conventional intraocular lenses. Ophthalmology 111, 318–324 (2004)

    Article  Google Scholar 

  14. G. Baïkoff, G. Matach, A. Fontaine, C. Ferraz, C. Spera, Correction of presbyopia with refractive multifocal phakic intraocular lenses. J. Cataract Refract. Surg. 30, 1454–1460 (2004)

    Article  Google Scholar 

  15. AcuFocus. AcuFocus ACI 7000 (2008), http://www.acufocus.com. Accessed 31 July 2008

  16. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, W. Ertmer, Application of ultrashort laser pulses for intrastromal refractive surgery. Graefes Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000)

    Article  Google Scholar 

  17. P.S. Binder, One thousand consecutive IntraLase laser in situ keratomileusis flaps. J. Cataract Refract. Surg. 32, 962–969 (2006)

    Article  Google Scholar 

  18. K. Stonecipher, T. Ignacio, M. Stonecipher, Advances in refractive surgery: microkeratome and femtosecond laser fl ap creation in relation to safety, effi cacy, predictability, and biomechanical stability. Curr. Opin. Ophthalmol. 17, 368–372 (2006)

    Article  Google Scholar 

  19. B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schlötzer-Schrehardt, G. Naumann, Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decomposition. Am. J. Ophthalmol. 136, 769–772 (2003)

    Article  Google Scholar 

  20. M. Holzer, T. Rabsilber, G. Auffarth, Penetrating keratoplasty using femtosecond laser. Am. J. Ophthalmol. 143, 524–526 (2007)

    Article  Google Scholar 

  21. D.V. Palanker, M.S. Blumenkranz, D. Andersen, M. Wiltberger, G. Marcellino, P. Gooding, D. Angeley, G. Schuele, B. Woodley, M. Simoneau, N.J. Friedman, B. Seibel, J. Batlle, R. Feliz, J. Talamo, W. Culbertson, Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med. 2(58), 58–85 (2010). doi: 10.1126/scitranslmed.3001305

    Google Scholar 

  22. N.J. Friedman, D.V. Palanker, G. Schuele, D. Andersen, G. Marcellino, B.S. Seibel, J. Batlle, R. Feliz, J.H. Talamo, M.S. Blumenkranz, W.W. Culbertson, Femtosecond laser capsulotomy. J. Cataract Refract. Surg. 37(7), 1189–1198 (2011). doi: 10.1016/j.jcrs.2011.04.022

    Google Scholar 

  23. Z. Nagy, A. Takacs, T. Filkorn, M. Sarayba, Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J. Refract. Surg. 25(12), 1053–1060 (2009). doi: 10.3928/1081597X-20091117-04

    Google Scholar 

  24. R.I. Myers, R.R. Krueger, Novel approaches to correction of presbyopia with laser modification of the crystalline lens. J. Refract. Surg. 14, 136–139 (1998)

    Google Scholar 

  25. R.R. Krueger, X.K. Sun, J. Stroh, R. Myers, Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses. Ophthalmology 108, 2122–2129 (2001)

    Article  Google Scholar 

  26. A. Heisterkamp, T. Ripken, T. Mamon, W. Dommer, H. Welling, W. Ertmer, H. Lubatschowski, Nonlinear side effects of fs pulses inside corneal tissue during photodisruption. Appl. Phys. B Lasers O. 74, 419–425 (2002)

    Article  ADS  Google Scholar 

  27. A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B Lasers O. 81, 1015–1047 (2005)

    Article  ADS  Google Scholar 

  28. T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, H. Lubatschowski, fs-Laser induced elasticity changes to improve presbyopic lens accommodation. Graefes Arch. Clin. Exp. Ophthalmol. 246, 897–906 (2008)

    Article  Google Scholar 

  29. A. Heisterkamp, T. Mamom, O. Kermani, W. Drommer, H. Welling, W. Ertmer, H. Lubatschowski, Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye. Graefes Arch. Clin. Exp. Ophthalmol. 241, 511–517 (2003)

    Article  Google Scholar 

  30. R.F. Fisher, The force of contraction of the human ciliary muscle during accommodation. J. Physiol. 270, 51–74 (1977)

    Article  Google Scholar 

  31. R.F. Fisher, The elastic constants of the human lens. J. Physiol. 212, 147–180 (1971)

    Article  Google Scholar 

  32. A.M. Rosen, D.B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J.M. Parel, R.C. Augusteyn, In vitro dimensions and curvatures of human lenses. Vision. Res. 46, 1002–1009 (2006)

    Article  Google Scholar 

  33. S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, H. Lubatschowski, Femtosecond laser induced flexibility change of human donor lenses. Vision. Res. 49, 1853–1859 (2009)

    Article  Google Scholar 

  34. R.A. Schachar, T. Huang, X. Huang, Mathematic proof of Schachar’s hypothesis of accommodation. Ann. Ophthalmol. 25, 5–9 (1993)

    Google Scholar 

  35. H.J. Burd, S.J. Judge, M.J. Flavell, Mechanics of accommodation of the human eye. Vision. Res. 39, 1591–1595 (1999)

    Article  Google Scholar 

  36. R.A. Schachar, A.J. Bax, Mechanism of human accommodation as analyzed by nonlinear finite element analysis. Compr. Ther. 27, 122–132 (2001)

    Article  Google Scholar 

  37. H.J. Burd, S.J. Judge, J.A. Cross, Numerical modelling of the accommodating lens. Vision. Res. 42, 2235–2251 (2002)

    Article  Google Scholar 

  38. E.A. Hermans, M. Dubbelman, G.L. van der Heijde, R.M. Heethaar, Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Vision. Res. 46, 3642–3650 (2006)

    Article  Google Scholar 

  39. Z. Liu, B.Wang, X. Xu, Y. Ju, J. Xie, C. Bao, in Engineering in Medicine and Biology Society IEEE-EMBS 2005. Finite Element modeling and simulating of accommodating human crystalline lens (2006) pp. 11–14

    Google Scholar 

  40. E. Hermans, M. Dubbelman, R. van der Heijde, R. Heethaar, The shape of the human lens nucleus with accommodation. J. Vis. 7, 1601–1610 (2007)

    Article  Google Scholar 

  41. H.A. Weeber, R.G.L. van der Heijde, On the relationship between lens stiffness and accommodative amplitude. Exp. Eye Res. 85, 602–607 (2007)

    Article  Google Scholar 

  42. E.A. Hermans, M. Dubbelman, G.L. van der Heijde, R.M. Heethaar, Change in the accommodative force on the lens of the human eye with age. Vision Res. 48, 119–126 (2008)

    Article  Google Scholar 

  43. R.F. Fisher, Elastic constants of the human lens capsule. J. Physiol. 201, 1–19 (1969)

    Article  Google Scholar 

  44. S. Krag, T. Olsen, T.T. Andreassen, Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest. Ophthalmol. Vis. Sci. 38, 357–363 (1997)

    Google Scholar 

  45. R.C. Augusteyn, M.A. Cake, Post-mortem water uptake by sheep lenses left in situ. Mol. Vis. 11, 749–751 (2005)

    Google Scholar 

  46. R.C. Augusteyn, A.M. Rosen, D. Borja, N.M. Ziebarth, J.M. Parel, Biometry of primate lenses during immersion in preservation media. Mol. Vis. 12, 740–747 (2006)

    Google Scholar 

  47. M. Dubbelman, G.L. Van der Heijde, H.A. Weeber, Change in shape of the aging human crystalline lens with accommodation. Vision Res. 45, 117–132 (2005)

    Article  Google Scholar 

  48. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, J.M. Parel, Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses. Exp. Eye Res. 78, 39–51 (2004)

    Article  Google Scholar 

  49. P. Rosales, M. Dubbelman, S. Marcos, R. van der Heijde, Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J. Vis. 6, 1057–1067 (2006)

    Article  Google Scholar 

  50. A. Duane, Studies in monocular and binocular accommodation, with their clinical application. Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922)

    Google Scholar 

  51. R.R. Krueger, J. Kuszak, H. Lubatschowski, R.I. Myers, T. Ripken, A. Heisterkamp, First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis. J. Cataract Refract. Surg. 31, 2386–2394 (2005)

    Article  Google Scholar 

  52. G. Gerten, T. Ripken, P. Breitenfeld, R.R. Krueger, O. Kermani, H. Lubatschowski, U. Oberheide, In-vitro- und In-vivo-Untersuchungen zur Presbyopiebehandlung mit Femtosekundenlasern. Ophthalmologe 104, 40–46 (2007)

    Article  Google Scholar 

  53. S. Schumacher, M. Fromm, U. Oberheide, G. Gerten, A. Wegener, H. Lubatschowski, In vivo application and imaging of intralenticular femtosecond laser pulses for the restoration of accommodation. J. Refract. Surg. 24, 991–995 (2008)

    Google Scholar 

  54. A. Gwon, F. Fankhauser, C. Puliafito, L. Gruber, M. Berns, Focal laser photoablation of normal and cataractous lenses in rabbits: preliminary report. J. Cataract Refract. Surg. 21, 282–286 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Schumacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schumacher, S., Oberheide, U. (2016). Femtosecond Lentotomy: A Prospect for a Treatment to Regain the Accommodation Ability. In: Nolte, S., Schrempel, F., Dausinger, F. (eds) Ultrashort Pulse Laser Technology. Springer Series in Optical Sciences, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-17659-8_13

Download citation

Publish with us

Policies and ethics