Skip to main content

Abstract

Organic voltage-sensitive dyes offer very high spatial and temporal resolution for imaging neuronal function. However these dyes suffer from the drawbacks of non-specificity of cell staining and low accessibility of the dye to some cell types. Further progress in imaging activity is expected from the development of genetically encoded fluorescent sensors of membrane potential. Cell type specificity of expression of these fluorescent protein (FP) voltage sensors can be obtained via several different mechanisms. One is cell type specificity of infection by individual virus subtypes. A second mechanism is specificity of promoter expression in individual cell types. A third, depends on the offspring of transgenic animals with cell type specific expression of cre recombinase mated with an animal that has the DNA for the FP voltage sensor in all of its cells but its expression is dependent on the recombinase activity. Challenges remain. First, the response time constants of many of the new FP voltage sensors are slower (2–10 ms) than those of organic dyes. This results in a relatively small fractional fluorescence change, ΔF/F, for action potentials. Second, the largest signal presently available is only ~40 % for a 100 mV depolarization and many of the new probes have signals that are substantially smaller. Large signals are especially important when attempting to detect fast events because the shorter measurement interval results in a relatively small number of detected photons and therefore a relatively large shot noise (see Chap. 1). Another kind of challenge has occurred when attempts were made to transition from one species to another or from one cell type to another or from cell culture to in vivo measurements.

Several laboratories have recently described a number of novel FP voltage sensors. Here we attempt to critically review the current status of these developments in terms of signal size, time course, and in vivo function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knöpfel T (2012) Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 108:2323–2337. doi:10.1152/jn.00452.2012

    Article  CAS  PubMed  Google Scholar 

  • Akemann W, Lundby A, Mutoh H, Knöpfel T (2009) Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophys J 96:3959–3976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker BJ, Kosmidis EK, Vucinic D, Falk C, Cohen L, Djurisic M, Zecevic D (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25:245–282

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK (2007) Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Methods 161:32–38

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Jin L, Zhou H, Cohen LB, Popovic M, Platisa J, Pieribone V (2012) Genetically encoded voltage sensors based on the Nematostella and Dario voltage sensing phosphatases exhibit fast kinetics, J. Neurosci Methods 208:190–196, NIHMSID #390003

    Article  CAS  Google Scholar 

  • Barnett L, Platisa J, Popovic M, Pieribone VA, Hughes T (2012) A fluorescent, genetically-encoded voltage probe capable of resolving action potentials. PLoS One 7(9), e43454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JE, Cohen LB, De Weer P, Pinto LH, Ross WN, Salzberg BM (1975) Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys J 15:1155–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913

    Article  CAS  PubMed  Google Scholar 

  • Chanda B, Blunck R, Faria LC, Schweizer FE, Mody I, Bezanilla F (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 8:1619–1626

    Article  CAS  PubMed  Google Scholar 

  • Charpak S, Mertz J, Beaurepaire E, Moreaux L, Delaney K (2001) Odor-evoked calcium signals in dendrites of rat mitral cells. Proc Natl Acad Sci U S A 98:1230–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88

    Google Scholar 

  • Davila HV, Salzberg BM, Cohen LB, Waggoner AS (1973) A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol 241:159–160

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov D, He Y, Mutoh H, Baker BJ, Cohen L, Akemann W, Knöpfel T (2007) Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One 2(5), e440. doi:10.1371/journal.pone.0000440

    Article  PubMed Central  PubMed  Google Scholar 

  • Flytzanis NC, Bedbrook CN, Chiu H, Engqvist MKM, Xiao C, Chan KY, Sternberg PW, Arnold FH, Gradinaru V (2014) Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat Commun 5:4894. doi:10.1038/ncomms5894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gautam SG, Perron A, Mutoh H, Knöpfel T (2009) Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins. Front Neuroeng 2:14. doi:10.3389/neuro.16.014.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grinvald A, Hildesheim R, Farber IC, Anglister L (1982) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J 39:301–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Wagner MJ, Li JZ, Schnitzer MJ (2014) Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat Commun 5:3674. doi:10.1038/ncomms4674

    PubMed Central  PubMed  Google Scholar 

  • Han Z, Jin L, Platisa J, Cohen LB, Baker BJ, Pieribone VA (2013) Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics. PLoS One 10:1371, journal.pone.0081295

    Google Scholar 

  • Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, Saulnier JL, Boulting GL, Straub C, Cho YK, Melkonian M, Wong GK, Harrison DJ, Murthy VN, Sabatini BL, Boyden ES, Campbell RE, Cohen AE (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:825–833. doi:10.1038/nmeth.3000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoppa MB, Gouzer G, Armbruster M, Ryan TA (2014) Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals. Neuron 84(4):778–789

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events visualized in neurons using a novel fluorescent protein voltage sensor. Neuron 75:779–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung A, Garcia JE, Kim E, Yoon B-J, Baker BJ (2015) Linker length and fusion site composition improve the optical signal of genetically-encoded fluorescent voltage sensors. J Neurophoton 2(2):021012

    Article  Google Scholar 

  • Junge W, Witt HT (1968) On the ion transport system of photosynthesis—investigations on a molecular level. Z Naturforsch B 23:244–254

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman B, Feix JB, Sieber F, Thomas JP, Girotti AW (1987) Photodynamic action of merocyanine 540 on artificial and natural cell membranes: involvement of singlet molecular oxygen. Proc Natl Acad Sci U S A 84:2999–3003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohout SC, Ulbrich MH, Bell SC, Isacoff EY (2007) Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol 15:106–108

    Article  PubMed  Google Scholar 

  • Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE (2012) Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods 9:90–95

    Article  CAS  Google Scholar 

  • Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Wanderling S, Paduch M, Medovoy D, Singharoy A, McGreevy R, Villalba-Galea, CA, Hulse RE, Roux B, Schulten K, Kossiakoff A & Perozo E (2014) Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat Struct Mol Biol 21:244–252

    Google Scholar 

  • Loew LM, Cohen LB, Salzberg BM, Obaid AL, Bezanilla F (1985) Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J 47:71–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lundby A, Mutoh H, Dimitrov D, Akemann W, Knöpfel T (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3(6), e2514

    Article  PubMed Central  PubMed  Google Scholar 

  • MacDonald VW, Jobsis FF (1976) Spectrophotometric studies on the pH of frog skeletal muscle. pH change during and after contractile activity. J Gen Physiol 68:179–195

    Article  CAS  PubMed  Google Scholar 

  • McIsaac RS, Engqvist MKM, Wannier T, Rosenthal AZ, Herwig L, Flytzanis NC, Imasheva ES, Lanyi JK, Balashov SP, Gradinaru V, Arnold FH (2014) Directed evolution of a far-red fluorescent rhodopsin. Proc Natl Acad Sci U S A 111:13034–13039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miesenbock G, Kevrekidis IG (2005) Optical imaging and control of genetically designated neurons in functioning circuits. Annu Rev Neurosci 28:533–563

    Article  PubMed  Google Scholar 

  • Mishina Y, Mutoh H, Song C, Knöpfel T (2014) Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain. Front Mol Neurosci 7:78. doi:10.3389/fnmol.2014.00078

    Article  PubMed Central  PubMed  Google Scholar 

  • Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Mutoh H, Perron A, Dimitrov D, Iwamoto Y, Akemann W, Chudakov DM, Knöpfel T (2009) Spectrally-resolved response properties of the three most advanced FRET Based fluorescent protein voltage probes. PLoS One 4(2), e4555, PMCID: PMC2641041

    Article  PubMed Central  PubMed  Google Scholar 

  • Perozo E, MacKinnon R, Bezanilla F, Stefani E (1993) Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11:353–358

    Article  CAS  PubMed  Google Scholar 

  • Piao HH, Rajakumar D, Kang BE, Kim EH, Baker BJ (2014) Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically-encoded fluorescent sensor of membrane potential. J Neurosci 35(1):372–385

    Article  Google Scholar 

  • Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  CAS  PubMed  Google Scholar 

  • Salzberg BM, Obaid AL, Bezanilla F (1993) Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon. Jpn J Physiol 43(Suppl 1):S37–S41

    PubMed  Google Scholar 

  • Shinar R, Druckmann S, Ottolenghi M, Korenstein R (1977) Electric field effects in bacteriorhodopsin. Biophys J 19:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741

    Article  CAS  PubMed  Google Scholar 

  • Storace DA, Braubach OR, Jin L., Cohen LB, Sung U (2015) Monitoring brain activity with protein voltage and calcium sensors. Nature Scientific Reports, in press

    Google Scholar 

  • Sung U, Sepehri-Rad M, Jin L, Hughes T, Cohen LB, Baker BJ (2014) Improving signal dynamics of fluorescent protein voltage sensors by optimizing FRET interactions. Biophys J 108(2):p152a

    Article  Google Scholar 

  • St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ (2014) High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 17:884–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsien RY (2005) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579:927–932

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 8:683–685

    Article  Google Scholar 

  • Tsutsui H, Jinno Y, Tomita A, Niino Y, Yamada Y (2013) Improved detection of electrical activity with a voltage probe based on a voltage-sensing phosphatase. J Physiol 591:4427–4437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villalba-Galea CA, Sandtner W, Dimitrov D, Mutoh H, Knopfel T, Bezanilla F (2009) Charge movement of the voltage sensitive fluorescent protein. Biophys J 96:L19–L21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, McMahon S, Zhang Z, Jackson MB (2012) Hybrid voltage sensor imaging of electrical activity from neurons in hippocampal slices from transgenic mice. J Neurophysiol 108:3147–3160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, Zhang Z, Chanda B, Jackson MB (2010) Improved probes for hybrid voltage sensor imaging. Biophys J 99:2355–2365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D, Werley CA, Harrison DJ, Campbell RE, Cohen AE (2014) Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun 5:4625. doi:10.1038/ncomms5625

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the World Class Institute program of the National Research Foundation of Korea, grant Number WCI 2009-003, the Center for Functional Connectomics at the Korea Institute of Science and Technology, and U.S. NIH grants DC005259 and NS054270, a James Hudson Brown – Alexander Brown Coxe fellowship from Yale University, and a Ruth L. Kirschstein National Research Service Award DC012981.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence B. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Storace, D. et al. (2015). Genetically Encoded Protein Sensors of Membrane Potential. In: Canepari, M., Zecevic, D., Bernus, O. (eds) Membrane Potential Imaging in the Nervous System and Heart. Advances in Experimental Medicine and Biology, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-319-17641-3_20

Download citation

Publish with us

Policies and ethics