Skip to main content

Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis

  • Chapter
Membrane Potential Imaging in the Nervous System and Heart

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 859))

Abstract

Ventricular fibrillation is the major underlying cause of sudden cardiac death. Understanding the complex activation patterns that give rise to ventricular fibrillation requires high resolution mapping of localized activation. The use of multi-electrode mapping unraveled re-entrant activation patterns that underlie ventricular fibrillation. However, optical mapping contributed critically to understanding the mechanism of defibrillation, where multi-electrode recordings could not measure activation patterns during and immediately after a shock. In addition, optical mapping visualizes the virtual electrodes that are generated during stimulation and defibrillation pulses, which contributed to the formulation of the virtual electrode hypothesis. The generation of virtual electrode induced phase singularities during defibrillation is arrhythmogenic and may lead to the induction of fibrillation subsequent to defibrillation. Defibrillating with low energy may circumvent this problem. Therefore, the current challenge is to use the knowledge provided by optical mapping to develop a low energy approach of defibrillation, which may lead to more successful defibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allessie MA, Bonke FI, Schopman FJ (1977) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41:9–18

    Article  CAS  PubMed  Google Scholar 

  • Bishop MJ, Gavaghan DJ, Trayanova NA, Rodriguez B (2007) Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart. J Electrocardiol 40:S75–S80

    Article  PubMed Central  PubMed  Google Scholar 

  • Boukens B, Efimov I (2014) A century of optocardiography. IEEE Rev Biomed Eng 7:115–125

    Article  PubMed Central  PubMed  Google Scholar 

  • Chattipakorn N, KenKnight BH, Rogers JM, Walker RG, Walcott GP, Rollins DL et al (1998) Locally propagated activation immediately after internal defibrillation. Circulation 97:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR (1999a) Virtual electrode induced re-excitation: a basic mechanism of defibrillation. Circ Res 85:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Cheng DK, Tung L, Sobie EA (1999b) Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 277:H351–H362

    CAS  PubMed  Google Scholar 

  • Cheng Y, Nikolski V, Efimov IR (2000) Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart. J Cardiovasc Electrophysiol 11:998–1007

    Article  CAS  PubMed  Google Scholar 

  • Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20

    Article  PubMed  Google Scholar 

  • Coronel R, Wilms-Schopman FJG, Opthof T, Janse MJ (2009) Dispersion of repolarization and arrhythmogenesis. Heart Rhythm 6:537–543

    Article  PubMed  Google Scholar 

  • de Bakker JM, van Capelle FJ, Janse MJ, Wilde AA, Coronel R, Becker AE et al (1988) Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 77:589–606

    Article  PubMed  Google Scholar 

  • Dekker E (1970) Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res 27:811–823

    Article  CAS  PubMed  Google Scholar 

  • Dillon SM (1991) Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res 69:842–856

    Article  CAS  PubMed  Google Scholar 

  • Dillon SM, Kwaku KF (1998) Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol 9:529–552

    Article  CAS  PubMed  Google Scholar 

  • Dower GE (1962) In Defence of the Intrinsic Deflection. Br Heart J 24:55–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Durrer D, Schoo L, Schuilenburg RM, Wellens HJ (1967) The role of premature beats in the initiation and the termination of supraventricular tachycardia in the Wolff-Parkinson-White syndrome. Circulation 36:644–662

    Article  CAS  PubMed  Google Scholar 

  • Efimov I, Salama G (2012) The future of optical mapping is bright: RE: review on: “optical imaging of voltage and calcium in cardiac cells and tissues” by Herron, Lee, and Jalife. Circ Res 110:e70–e71

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Cheng YN, Biermann M, Van Wagoner DR, Mazgalev T, Tchou PJ (1997) Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol 8:1031–1045

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ (1998) Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res 82:918–925

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Gray RA, Roth BJ (2000) Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol 11:339–353

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95:21–33

    Article  CAS  PubMed  Google Scholar 

  • Fabiato A, Coumel P, Gourgon R, Saumont R (1967) The threshold of synchronous response of the myocardial fibers. Application to the experimental comparison of the efficacy of different forms of electroshock defibrillation. Arch Mal Coeur Vaiss 60:527–544

    CAS  PubMed  Google Scholar 

  • Fast VG, Kleber AG (1997) Role of wavefront curvature in propagation of cardiac impulse. Cardiovasc Res 33:258–271

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Rohr S, Gillis AM, Kleber AG (1998) Activation of cardiac tissue by extracellular electrical shocks: formation of ‘secondary sources’ at intercellular clefts in monolayers of cultured myocytes. Circ Res 82:375–385

    Article  CAS  PubMed  Google Scholar 

  • Fedorov VV, Lozinsky IT, Sosunov EA, Anyukhovsky EP, Rosen MR, Balke CW et al (2007) Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4:619–626

    Article  PubMed  Google Scholar 

  • Fishler MG (1997) The transient far-field response of a discontinuous one-dimensional cardiac fiber to subthreshold stimuli. IEEE Trans Biomed Eng 44:10–18

    Article  CAS  PubMed  Google Scholar 

  • Furman S, Hurzeler P, Parker B (1975) Clinical thresholds of endocardial cardiac stimulation: a long-term study. J Surg Res 19:149–155

    Article  CAS  PubMed  Google Scholar 

  • Garrey W (1914) The nature of fibrillary contraction of the heart: its relation to tissue mass and form. Am J Physiol 33:17

    Google Scholar 

  • Gillis AM, Fast VG, Rohr S, Kleber AG (2000) Mechanism of ventricular defibrillation. The role of tissue geometry in the changes in transmembrane potential in patterned myocyte cultures. Circulation 101:2438–2445

    Article  CAS  PubMed  Google Scholar 

  • Gutbrod SR, Efimov IR (2013) Two centuries of resuscitation. J Am Coll Cardiol 62:2110–2111

    Article  PubMed  Google Scholar 

  • Hoffman BF, Rosen MR (1981) Cellular mechanisms for cardiac arrhythmias. Circ Res 49:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hooker DR, Kouwenhoven WB, Langworthy OR (1933) The effect of alternating electrical currents on the heart. Am J Physiol 103:444–454

    Google Scholar 

  • Huikuri HV, Castellanos A, Myerburg RJ (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Janardhan AH, Li W, Fedorov VV, Yeung M, Wallendorf MJ, Schuessler RB et al (2012) A novel low-energy electrotherapy that terminates ventricular tachycardia with lower energy than a biphasic shock when antitachycardia pacing fails. J Am Coll Cardiol 60:2393–2398

    Article  PubMed  Google Scholar 

  • Janardhan AH, Gutbrod SR, Li W, Lang D, Schuessler RB, Efimov IR (2014) Multistage electrotherapy delivered through chronically-implanted leads terminates atrial fibrillation with lower energy than a single biphasic shock. J Am Coll Cardiol 63:40–48

    Article  PubMed Central  PubMed  Google Scholar 

  • Janks DL, Roth BJ (2002) Averaging over depth during optical mapping of unipolar stimulation. IEEE Trans Biomed Eng 49:1051–1054

    Article  PubMed  Google Scholar 

  • Janse MJ, Rosen MR (2006) History of arrhythmias. Handb Exp Pharmacol (171): 1–39

    Google Scholar 

  • Jeffrey K (2001) Machines in our hearts: the cardiac pacemaker, the implantable defibrillator, and american health care. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Josephson ME, Horowitz LN, Farshidi A (1978) Continuous local electrical activity. A mechanism of recurrent ventricular tachycardia. Circulation 57:659–665

    Article  CAS  PubMed  Google Scholar 

  • Kay MW, Amison PM, Rogers JM (2004) Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans Biomed Eng 51:1219–1229

    Article  PubMed  Google Scholar 

  • Kleber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Article  CAS  PubMed  Google Scholar 

  • Knisley SB, Blitchington TF, Hill BC, Grant AO, Smith WM, Pilkington TC et al (1993) Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ Res 72:255–270

    Article  CAS  PubMed  Google Scholar 

  • Kong CY, Nattinger KJ, Hayeck TJ, Omer ZB, Wang YC, Spechler SJ et al (2011) The impact of obesity on the rise in esophageal adenocarcinoma incidence: estimates from a disease simulation model. Cancer Epidemiol Biomarkers Prev 20:2450–2456

    Article  PubMed Central  PubMed  Google Scholar 

  • Lou Q, Ripplinger CM, Bayly PV, Efimov IR (2008) Quantitative panoramic imaging of epicardial electrical activity. Ann Biomed Eng 36:1649–1658

    Article  PubMed Central  PubMed  Google Scholar 

  • Lou Q, Li W, Efimov IR (2012) The role of dynamic instability and wavelength in arrhythmia maintenance as revealed by panoramic imaging with blebbistatin vs. 2,3-butanedione monoxime. Am J Physiol Heart Circ Physiol 302:H262–H269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehra R, Furman S (1979) Comparison of cathodal, anodal, and bipolar strength-interval curves with temporary and permanent pacing electrodes. Br Heart J 41:468–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehra R, Furman S, Crump JF (1977) Vulnerability of the mildly ischemic ventricle to cathodal, anodal, and bipolar stimulation. Circ Res 41:159–166

    Article  CAS  PubMed  Google Scholar 

  • Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram. I. The normal heart. Circ Res 43:301–315

    Article  CAS  PubMed  Google Scholar 

  • Mines GR (1913) On dynamic equilibrium of the heart. J Physiol 46:349–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mines GR (2010) On circulating excitations in heart muscle and their possible relation to tachycardia and fibrillation. Trans Roy Soc Can 8:43

    Google Scholar 

  • Niederer S, Mitchell L, Smith N, Plank G (2011) Simulating human cardiac electrophysiology on clinical time-scales. Front Physiol 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Nikolski V, Efimov IR (2000) Virtual electrode polarization of ventricular epicardium during bipolar stimulation. J Cardiovasc Electrophysiol 11:605

    Article  CAS  PubMed  Google Scholar 

  • Nikolski VP, Sambelashvili AT, Efimov IR (2002) Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic stimulation. Am J Physiol Heart Circ Physiol 282:H565–H575

    Article  CAS  PubMed  Google Scholar 

  • Pogwizd SM, Corr PB (1987) Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res 61:352–371

    Article  CAS  PubMed  Google Scholar 

  • Potse M (2012) Mathematical modeling and simulation of ventricular activation sequences: implications for cardiac resynchronization therapy. J Cardiovasc Transl Res 5:146–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramshesh VK, Knisley SB (2003) Spatial localization of cardiac optical mapping with multiphoton excitation. J Biomed Opt 8:253–259

    Article  PubMed  Google Scholar 

  • Ripplinger CME, Igor R (2009) The virtual electrode hypothesis of defibrillation. In: Efimov IR, Kroll MW, Tchou P (eds) Cardiac bioelectric therapy: mechanisms and practical implications. Springer Science + Business Media, New York

    Google Scholar 

  • Ripplinger CM, Krinsky VI, Nikolski VP, Efimov IR (2006) Mechanisms of unpinning and termination of ventricular tachycardia. Am J Physiol Heart Circ Physiol 291:H184–H192

    Article  CAS  PubMed  Google Scholar 

  • Ripplinger CM, Lou Q, Li W, Hadley J, Efimov IR (2009) Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: implications for low-voltage cardioversion. Heart Rhythm 6:87–97

    Article  PubMed Central  PubMed  Google Scholar 

  • Rogers JM, Walcott GP, Gladden JD, Melnick SB, Kay MW (2007) Panoramic optical mapping reveals continuations epicardial reentry during ventricular fibrillation in the isolated swine heart. Biophys J 92:1090–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sepulveda NG, Wikswo JP (1994) Bipolar stimulation of cardiac tissue using an anisotropic bidomain model. J Cardiovasc Electrophysiol 5:258–267

    Article  CAS  PubMed  Google Scholar 

  • Sepulveda NG, Roth BJ, Wikswo JP (1989) Current injection into a two-dimensional anisotropic bidomain. Biophys J 55:987–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shenassa M, Borggrefe M, Briethardt G (2013) Cardiac mapping, 4th edn. Elsmford Blackwell Publishing/Futura Division, Armonk, NY

    Book  Google Scholar 

  • Sobie EA, Susil RC, Tung L (1997) A generalized activating function for predicting virtual electrodes in cardiac tissue. Biophys J 73:1410–1423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spach MS, Barr RC, Serwer GA, Kootsey JM, Johnson EA (1972) Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ Res 30:505–519

    Article  CAS  PubMed  Google Scholar 

  • Stevenson WG, Wiener I, Weiss JN (1986) Comparison of bipolar and unipolar programmed electrical stimulation for the initiation of ventricular arrhythmias: significance of anodal excitation during bipolar stimulation. Circulation 73:693–700

    Article  CAS  PubMed  Google Scholar 

  • Sweeney RJ, Gill RM, Steinberg MI, Reid PR (1990) Ventricular refractory period extension caused by defibrillation shocks. Circulation 82:965–972

    Article  CAS  PubMed  Google Scholar 

  • Taccardi B, Arisi G, Macchi E, Baruffi S, Spaggiari S (1987) A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation 75:272–281

    Article  CAS  PubMed  Google Scholar 

  • Tereshchenko LG, Faddis MN, Fetics BJ, Zelik KE, Efimov IR, Berger RD (2009) Transient local injury current in right ventricular electrogram after implantable cardioverter-defibrillator shock predicts heart failure progression. J Am Coll Cardiol 54:822–828

    Article  PubMed Central  PubMed  Google Scholar 

  • Trayanova N, Plank G, Rodriguez B (2006) What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Heart Rhythm 3:1232–1235

    Article  PubMed Central  PubMed  Google Scholar 

  • White JB, Walcott GP, Pollard AE, Ideker RE (1998) Myocardial discontinuities: a substrate for producing virtual electrodes that directly excite the myocardium by shocks. Circulation 97:1738–1745

    Article  CAS  PubMed  Google Scholar 

  • Wiener N, Rosenblueth A (1946) The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol Mex 16:205–265

    CAS  PubMed  Google Scholar 

  • Wiggers CJ (1940) The physiological basis for cardiac resuscitation from ventricular fibrillation- method for serial defibrillation. Am Heart J 20:413–422

    Article  Google Scholar 

  • Wikswo JP Jr, Wisialowski TA, Altemeier WA, Balser JR, Kopelman HA, Roden DM (1991) Virtual cathode effects during stimulation of cardiac muscle Two-dimensional in vivo experiments. Circ Res 68:513–530

    Article  PubMed  Google Scholar 

  • Wikswo JP, Lin SF, Abbas RA (1995) Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 69:2195–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanouchi Y, Cheng Y, Tchou PJ, Efimov IR (2001) The mechanisms of vulnerable window: the role of virtual electrodes and shock polarity. Can J Physiol Pharmacol 79:25–33

    Article  CAS  PubMed  Google Scholar 

  • Zipes DP, Fischer J, King RM, Nicoll AD, Jolly WW (1975) Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 36:37–44

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor R. Efimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boukens, B.J., Gutbrod, S.R., Efimov, I.R. (2015). Imaging of Ventricular Fibrillation and Defibrillation: The Virtual Electrode Hypothesis. In: Canepari, M., Zecevic, D., Bernus, O. (eds) Membrane Potential Imaging in the Nervous System and Heart. Advances in Experimental Medicine and Biology, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-319-17641-3_14

Download citation

Publish with us

Policies and ethics