Skip to main content

Optical Imaging of Cardiac Action Potential

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 859))

Abstract

This chapter reviews the major milestones and scientific achievements facilitated by optical imaging of the action potential in the heart over more than four decades since its introduction. We discuss the limitations of this technique, which sometimes are not fully recognized; the unresolved issues, such as motion artifacts, and the newest developments and future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baker LC, Wolk R, Choi BR, Watkins S, Plan P, Shah A, Salama G (2004) Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-d on the electrophysiology of perfused mouse hearts. Am J Physiol Heart Circ Physiol 287:H1771–H1779

    Article  CAS  PubMed  Google Scholar 

  • Baxter WT, Mironov SF, Zaitsev AV, Jalife J, Pertsov AM (2001) Visualizing excitation waves inside cardiac muscle using transillumination. Biophys J 80:516–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beauchamp P, Yamada KA, Baertschi AJ, Green K, Kanter EM, Saffitz JE, Kleber AG (2006) Relative contributions of connexins 40 and 43 to atrial impulse propagation in synthetic strands of neonatal and fetal murine cardiomyocytes. Circ Res 99:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Bernus O, Wellner M, Mironov SF, Pertsov AM (2005) Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods. Phys Med Biol 50:215–229

    Article  CAS  PubMed  Google Scholar 

  • Bishop MJ, Rodriguez B, Eason J, Whiteley JP, Trayanova N, Gavaghan DJ (2006) Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping. Biophys J 90:2938–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    Article  CAS  PubMed  Google Scholar 

  • Brack KE, Narang R, Winter J, Ng GA (2013) The mechanical uncoupler blebbistatin is associated with significant electrophysiological effects in the isolated rabbit heart. Exp Physiol 98:1009–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bray MA, Lin SF, Wikswo JP Jr (2000) Three-dimensional surface reconstruction and fluorescent visualization of cardiac activation. IEEE Trans Biomed Eng 47:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Bub G, Glass L, Publicover NG, Shrier A (1998) Bursting calcium rotors in cultured cardiac myocyte monolayers. Proc Natl Acad Sci U S A 95:10283–10287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caldwell BJ, Wellner M, Mitrea BG, Pertsov AM, Zemlin CW (2010) Probing field-induced tissue polarization using transillumination fluorescent imaging. Biophys J 99:2058–2066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell K, Calvo CJ, Mironov S, Herron T, Berenfeld O, Jalife J (2012) Spatial gradients in action potential duration created by regional magnetofection of herg are a substrate for wavebreak and turbulent propagation in cardiomyocyte monolayers. J Physiol 590:6363–6379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi BR, Salama G (2000) Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol 529(Pt 1):171–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J (1990) Sustained vortex-like waves in normal isolated ventricular muscle. Proc Natl Acad Sci 87:8785–8789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J (1992) Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:349–351

    Article  CAS  PubMed  Google Scholar 

  • Davila HV, Salzberg BM, Cohen LB, Waggoner AS (1973) A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol 241:159–160

    Article  CAS  PubMed  Google Scholar 

  • Dillon S, Morad M (1981) A new laser scanning system for measuring action potential propagation in the heart. Science 214:453–456

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Mazgalev TN (1998) High-resolution, three-dimensional fluorescent imaging reveals multilayer conduction pattern in the atrioventricular node. Circulation 98:54–57

    Article  CAS  PubMed  Google Scholar 

  • Efimov I, Salama G (2012) The future of optical mapping is bright: Re: Review on: “Optical imaging of voltage and calcium in cardiac cells and tissues” by Herron, Lee, and Jalife. Circ Res 110:e70–e71

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Ideker RE (2000) Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures. J Cardiovasc Electrophysiol 11:547–556

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Kléber AG (1993) Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ Res 73:914–925

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Kleber AG (1994) Anisotropic conduction in monolayers of neonatal rat heart cells cultured on collagen substrate. Circ Res 75:591–595

    Article  CAS  PubMed  Google Scholar 

  • Fast VG, Sharifov OF, Cheek ER, Newton JC, Ideker RE (2002) Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Circulation 106:1007–1014

    Article  PubMed  Google Scholar 

  • Fedorov VV, Lozinsky IT, Sosunov EA, Anyukhovsky EP, Rosen MR, Balke CW, Efimov IR (2007) Application of blebbistatin as an excitation–contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4:619–626

    Article  PubMed  Google Scholar 

  • Fedorov VV, Glukhov AV, Chang R, Kostecki G, Aferol H, Hucker WJ, Wuskell JP, Loew LM, Schuessler RB, Moazami N, Efimov IR (2010) Optical mapping of the isolated coronary-perfused human sinus node. J Am Coll Cardiol 56:1386–1394

    Article  PubMed Central  PubMed  Google Scholar 

  • Girouard SD, Pastore JM, Laurita KR, Gregory KW, Rosenbaum DS (1996) Optical mapping in a new guinea pig model of ventricular tachycardia reveals mechanisms for multiple wavelengths in a single reentrant circuit. Circulation 93:603–613

    Article  CAS  PubMed  Google Scholar 

  • Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, Pertsov AM (1995) Mechanisms of cardiac fibrillation. Science 270:1222–1223, author reply 1224–1225

    Article  CAS  PubMed  Google Scholar 

  • Gray RA, Pertsov AM, Jalife J (1998) Spatial and temporal organization during cardiac fibrillation. Nature 392:75–78

    Article  CAS  PubMed  Google Scholar 

  • Grinvald A, Cohen LB, Lesher S, Boyle MB (1981) Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. J Neurophysiol 45:829–840

    CAS  PubMed  Google Scholar 

  • Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, Daly M, Amraoui S, Zellerhoff S, Picat MQ, Quotb A, Jesel L, Lim H, Ploux S, Bordachar P, Attuel G, Meillet V, Ritter P, Derval N, Sacher F, Bernus O, Cochet H, Jais P, Dubois R (2014) Driver domains in persistent atrial fibrillation. Circulation 130:530–538

    Article  PubMed  Google Scholar 

  • Herron TJ, Lee P, Jalife J (2012) Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110:609–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hillman EM, Bernus O, Pease E, Bouchard MB, Pertsov A (2007) Depth-resolved optical imaging of transmural electrical propagation in perfused heart. Opt Express 15:17827–17841

    Article  PubMed Central  PubMed  Google Scholar 

  • Hooks DA, LeGrice IJ, Harvey JD, Smaill BH (2001) Intramural multisite recording of transmembrane potential in the heart. Biophys J 81:2671–2680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyatt CJ, Mironov SF, Wellner M, Berenfeld O, Popp AK, Weitz DA, Jalife J, Pertsov AM (2003) Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys J 85:2673–2683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanaporis G, Martisiene I, Jurevicius J, Vosyliute R, Navalinskas A, Treinys R, Matiukas A, Pertsov AM (2012) Optical mapping at increased illumination intensities. J Biomed Opt 17:96007-1

    Article  PubMed  Google Scholar 

  • Kauer JS (1988) Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature 331:166–168

    Article  CAS  PubMed  Google Scholar 

  • Kay MW, Amison PM, Rogers JM (2004) Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans Biomed Eng 51:1219–1229

    Article  PubMed  Google Scholar 

  • Khwaounjoo P, Rutherford SL, Svrcek M, LeGrice IJ, Trew ML, Smaill BH (2015) Image-based motion correction for optical mapping of cardiac electrical activity. Ann Biomed Eng 43(5):1235–1246

    Article  PubMed  Google Scholar 

  • Knisley S, Blitchington T, Hill B, Grant A, Smith W, Pilkington T, Ideker R (1993) Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ Res 72:255–270

    Article  CAS  PubMed  Google Scholar 

  • Knisley SB, Justice RK, Kong W, Johnson PL (2000) Ratiometry of transmembrane voltage-sensitive fluorescent dye emission in hearts. Am J Physiol Heart Circ Physiol 279:H1421–H1433

    CAS  PubMed  Google Scholar 

  • Kong W, Pollard AE, Fast VG (2011) A new optrode design for intramural optical recordings. IEEE Trans Biomed Eng 58:3130–3134

    Article  PubMed Central  PubMed  Google Scholar 

  • Laughner JI, Ng FS, Sulkin MS, Arthur RM, Efimov IR (2012) Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am J Physiol Heart Circ Physiol 303:H753–H765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HC, Smith N, Mohabir R, Clusin WT (1987) Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci U S A 84:7793–7797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MH, Lin SF, Ohara T, Omichi C, Okuyama Y, Chudin E, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS (2001) Effects of diacetyl monoxime and cytochalasin d on ventricular fibrillation in swine right ventricles. Am J Physiol Heart Circ Physiol 280:H2689–H2696

    CAS  PubMed  Google Scholar 

  • Lee P, Bollensdorff C, Quinn TA, Wuskell JP, Loew LM, Kohl P (2011) Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm 8:1482–1491

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee P, Klos M, Bollensdorff C, Hou L, Ewart P, Kamp TJ, Zhang J, Bizy A, Guerrero-Serna G, Kohl P, Jalife J, Herron TJ (2012) Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ Res 110:1556–1563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin SF, Roth BJ, Wikswo JP Jr (1999) Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol 10:574–586

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cabo C, Salomonsz R, Delmar M, Davidenko J, Jalife J (1993) Effects of diacetyl monoxime on the electrical properties of sheep and guinea pig ventricular muscle. Cardiovasc Res 27:1991–1997

    Article  CAS  PubMed  Google Scholar 

  • Lou Q, Li W, Efimov IR (2012) The role of dynamic instability and wavelength in arrhythmia maintenance as revealed by panoramic imaging with blebbistatin vs. 2,3-butanedione monoxime. Am J Physiol Heart Circ Physiol 302:H262–H269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matiukas A, Mitrea BG, Qin M, Pertsov AM, Shvedko AG, Warren MD, Zaitsev AV, Wuskell JP, Wei MD, Watras J, Loew LM (2007) Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4:1441–1451

    Article  PubMed Central  PubMed  Google Scholar 

  • Mironov SF, Vetter FJ, Pertsov AM (2006) Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am J Physiol Heart Circ Physiol 291:H327–H335

    Article  CAS  PubMed  Google Scholar 

  • Mitrea BG, Wellner M, Pertsov AM (2009) Monitoring intramyocardial reentry using alternating transillumination. Conf Proc IEEE Eng Med Biol Soc 2009:4194–4197

    PubMed Central  PubMed  Google Scholar 

  • Mitrea BG, Caldwell BJ, Pertsov AM (2011) Imaging electrical excitation inside the myocardial wall. Biomed Opt Express 2:620–633

    Article  PubMed Central  PubMed  Google Scholar 

  • Plank G, Prassl A, Hofer E, Trayanova NA (2008) Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys J 94:1904–1915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohde GK, Dawant BM, Lin SF (2005) Correction of motion artifact in cardiac optical mapping using image registration. IEEE Trans Biomed Eng 52:338–341

    Article  PubMed  Google Scholar 

  • Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  CAS  PubMed  Google Scholar 

  • Salama G, Morad M (1976) Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science 191:485–487

    Article  CAS  PubMed  Google Scholar 

  • Salama G, Lombardi R, Elson J (1987) Maps of optical action potentials and NADH fluorescence in intact working hearts. Am J Physiol 252:H384–H394

    CAS  PubMed  Google Scholar 

  • Salzberg BM, Davila HV, Cohen LB (1973) Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509

    Article  CAS  PubMed  Google Scholar 

  • Schricker AA, Lalani GG, Krummen DE, Narayan SM (2014) Rotors as drivers of atrial fibrillation and targets for ablation. Curr Cardiol Rep 16:509

    Article  PubMed Central  PubMed  Google Scholar 

  • Swift LM, Asfour H, Posnack NG, Arutunyan A, Kay MW, Sarvazyan N (2012) Properties of blebbistatin for cardiac optical mapping and other imaging applications. Pflugers Arch 464:503–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  CAS  PubMed  Google Scholar 

  • Tung L, Zhang Y (2006) Optical imaging of arrhythmias in tissue culture. J Electrocardiol 39:S2–S6

    Article  PubMed  Google Scholar 

  • Venable PW, Taylor TG, Shibayama J, Warren M, Zaitsev AV (2010) Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart. Am J Physiol Heart Circ Physiol 299:H1405–H1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wikswo JP Jr, Lin SF, Abbas RA (1995) Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J 69:2195–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Biermann M, Rubart M, Zipes DP (1998) Cytochalasin d as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium. J Cardiovasc Electrophysiol 9:1336–1347

    Article  CAS  PubMed  Google Scholar 

  • Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM (2000) Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res 86:408–417

    Article  CAS  PubMed  Google Scholar 

  • Zemlin CW, Mironov S, Pertsov AM (2006) Near-threshold field stimulation: intramural versus surface activation. Cardiovasc Res 69:98–106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Pertsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pertsov, A., Walton, R.D., Bernus, O. (2015). Optical Imaging of Cardiac Action Potential. In: Canepari, M., Zecevic, D., Bernus, O. (eds) Membrane Potential Imaging in the Nervous System and Heart. Advances in Experimental Medicine and Biology, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-319-17641-3_12

Download citation

Publish with us

Policies and ethics