Development of the Product State Concept

  • Thorsten WuestEmail author
Part of the Springer Theses book series (Springer Theses)


In this section, the product state concept and its development will be illustrated from a theoretical perspective. The main intension is to provide a general understanding of the goals and basic pillars of the concept and its argumentation. Another major goal of this section is to discuss and present the challenges and limitations to the application of the presented theoretical approach in practice. This outcome is crucial for the selection of appropriate methods and the following approach to identify state drivers despite the knowledge gap concerning process intra- and inter-relations using ML which will bring the product state concept to life.


Manufacturing Process State Characteristic Unify Modeling Language Product State Customer Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alpaydın, E. (2010). Introduction to machine learning (2nd ed.). Cambridge: The MIT Press.zbMATHGoogle Scholar
  2. Anderl, R., Picard, A., & Albrecht, K. (2013). Smart product engineering. In M. Abramovici & R. Stark (Eds.), 23rd CIRP Design Conference (pp. 1–10). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-30817-8.Google Scholar
  3. Angel, E., & Zissimopoulos, V. (1998). On the quality of local search for the quadratic assignment problem. Discrete Applied Mathematics, 82(1–3), 15–25. doi: 10.1016/S0166-218X(97)00129-7.CrossRefzbMATHMathSciNetGoogle Scholar
  4. Apley, D., & Shi, J. (2001). A factor-analysis method for diagnosing variability in mulitvariate manufacturing processes. Technometrics, 43(1), 84–95.CrossRefzbMATHMathSciNetGoogle Scholar
  5. Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of genetic algorithms to solve production and operations management problems: A review. International Journal of Production Research, 41(17), 3955–4009. doi: 10.1080/00207540310001626319.CrossRefGoogle Scholar
  6. Baker, A. D. (1988). Complete manufacturing control using a contract net: A simulation study. In International Conference on Computer Integrated Manufacturing, 1988 (pp. 100–109). doi: 10.1109/CIM.1988.5399.
  7. Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual database design. An entity-relationship-approach. Redwood City: Addison Wesley.zbMATHGoogle Scholar
  8. Becker, J. (1998). Die Grundsätze ordnungsmäßiger Modellierung und ihre Einbettung in ein Vorgehensmodell zur Erstellung betrieblicher Informationsmodelle. Retrieved April 15, 2012, from
  9. Becker, J., & Schütte, R. (2004). Handelsinformationssysteme. Frankfurt am Main: Redline Wirtschaft.Google Scholar
  10. Borror, C., Montgomery, D., & Runger, G. (1999). Robustness of the EWMA control chart to non-normality. Journal of Quality Technology, 31(3), 309–316.Google Scholar
  11. Brinksmeier, E. (1991). Prozeß-und Werkstückqualität in der Feinbearbeitung. Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik (p. 256). Düsseldorf: VDI-Verlag.Google Scholar
  12. Brinksmeier, E., & Brockhoff, T. (1996). Utilization of grinding heat as a new heat treatment process. CIRP Annals—Manufacturing Technology, 45(1), 283–286. doi: 10.1016/S0007-8506(07)63064-9.CrossRefGoogle Scholar
  13. Brockhoff, T. (1999). Grind-hardeing: A comprehensive view. CIRP—Manufacturing Technology, 48(1), 255–260.Google Scholar
  14. Brun, Y. (2008). Solving NP-complete problems in the tile assembly model. Theoretical Computer Science, 395(1), 31–46. doi: 10.1016/j.tcs.2007.07.052.Google Scholar
  15. Chander, A., Dean, D., & Mitchell, J. C. (2001). A state-transition model of trust management and access control. In Proceedings of the 14th IEEE Computer Security Foundations Workshop, 2001, Ieee (pp. 27–43). doi: 10.1109/CSFW.2001.930134.
  16. Chen, J., Su, H., Wu, C., & Oh, C. H. (2012). Quantumness of product states. eprint arXiv:1204.1798.Google Scholar
  17. Chou, Y., Polansky, A., & Mason, R. (1998). Transforming non-normal data to normality in statistical process control. Journal of Quality Technology, 30(2), 133–141.Google Scholar
  18. Chryssolouris, G., & Guillot, M. (1988). An AI approach to the selection of process parameters in intelligent machining. Proceedings of the Winter Annual Meeting of the ASME on Sensors and Controls for Manufacturin. Chicago, Illinois.Google Scholar
  19. Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC ’71 Proceedings of the Third Annual ACM Symposium on Theory of computing (pp. 151–158). doi: 10.1145/800157.805047.
  20. Cooper, R. G. (2008). Perspective: The stage-gates idea-to-launch process—update, what’s new and NexGen systems. Journal of Product Innovation Management, 25(3), 213–232.CrossRefGoogle Scholar
  21. Cooper, R. G. (2010). Top oder Flop in der Produktentwicklung. 2. Auflage: Weinheim.Google Scholar
  22. Crama, Y., & Klundert, J. J. (1997). Robotic flowshop scheduling is strongly NP-complete. Maastricht: METEOR, Maastricht research school of Economics of Technology and Organizations.Google Scholar
  23. Denkena, B., & Tönshoff, H. K. (2011). Spanen. Grundlagen (3rd ed.). Heidelberg: Springer. doi: 10.1007/978-3-642-19772-7.Google Scholar
  24. Dijkman, M. (2009). Automated compensation of distortion in the production process of bearing rings. Dissertation Universität Bremen, Verlagshaus Mainz GmbH, Aachen.Google Scholar
  25. Elmaraghy, W., Elmaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in engineering design and manufacturing. CIRP Annals—Manufacturing Technology, 61, 793–814.CrossRefGoogle Scholar
  26. Garetti, M., & Terzi, S. (2004). Product lifecycle management: Definition, trends and open issues. In Proceedings at the 3rd International Conference on Advances in Production Engineering, June 17–19, 2004. Warsaw, Poland.Google Scholar
  27. Geller, W. (2006). Thermodynamik für Maschinenbauer—Grundlagen für die Praxis. Heidelberg: Springer.Google Scholar
  28. Gogolla, M., & Parisi-Presicce, F. (1998). State diagrams in UML: A formal semantics using graph transformations. In M. Broy, D. Coleman, T. S. E. Maibaum, & B. Rumpe (Eds.), Proceedings PSMT’98 Workshop on Precise Semantics for Modeling Techniques. Technische Universität München, TUM-I9803.Google Scholar
  29. Goseva-Popstojanova, K., Wang, F., Wang, R., Gong, F., Vaidyanathan, K., Trivedi, K., & Muthusamy, B. (2001). Characterizing intrusion tolerant systems using a state transition model. In Proceedings of the DARPA Information Survivability Conference & Exposition II, 2001. DISCEX’01 (Vol. 2, pp. 211–221).Google Scholar
  30. Haegeman, J., Cirac, J. I., Osborne, T. J., & Verstraete, F. (2012). Calculus of continuous matrix product states. eprint arXiv:1211.3935. Retrieved from arXiv:1211.3935.Google Scholar
  31. Harding, J., Shahbaz, A., Srinivas, M., & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969. doi: 10.1115/1.2194554.Google Scholar
  32. Heinrich, L. J., Heinzl, A., & Roithmayr, F. (2007). Wirtschaftsinformatik: Einführung und Grundlegung. München: Oldenbourg Verlag.Google Scholar
  33. Heinecke, G., Lamparter, S., & Kunz, A. (2011). Process transparency: Effects of a structured read point selection. In Proceedings of the 21st International Conference on Production Research, Innovation in Product and Production, July 31–August 4, 2011. Stuttgart, Germany.Google Scholar
  34. Hüttig, G. F. (1943). Zur Systematik der Aggregatzustände. Colloid and Polymer Science, 104(2–3), 161–167.Google Scholar
  35. Kaiser, M. J. (1998). Generalized zone separation functionals for convex perfect forms and incomplete data sets. International Journal of Machine Tools and Manufacture, 38(4), 375–404. doi: 10.1016/S0890-6955(97)00042-4.CrossRefGoogle Scholar
  36. Kalpakjian, S., & Schmid, S. R. (2009). Manufacturing engineering and technology. New Jersey: Prentice Hall.Google Scholar
  37. Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers and Chemical Engineering, 32(1–2), 12–24. doi: 10.1016/j.compchemeng.2007.07.005.CrossRefGoogle Scholar
  38. Keferstein, C. (2011). Fertigungsmesstechnik praxisorientierte Grundlagen, mo-derne Messverfahren. Wiesbaden: Vieweg+Teubner-Verlag.Google Scholar
  39. Kent, J. T. (1983). Information gain and a general measure of correlation. Biometrika, 70(1), 163–173. doi: 10.1093/biomet/70.1.163.CrossRefzbMATHMathSciNetGoogle Scholar
  40. Knoke, B., Wuest, T., & Thoben, K.-D. (2012). Understanding product state relations within manufacturing processes. In C. Emmanouilidis, M. Taisch, & D. Kiritsis (Eds.), International Conference of Advances in Production Management Systems (APMS 2012)—Competitive Manufacturing for Innovative Products and Services. Berlin, Heidelberg: Springer.Google Scholar
  41. Kobler, M. (2010). Qualität von Prozessmodellen: Kennzahlen zur analytischen Qualitätssicherung bei der Prozessmodellierung. Berlin: Logos Verlag.Google Scholar
  42. König, W., & Klocke, F. (2008). Fertigungsverfahren Drehen, Fräsen, Bohren 8, neu (bearbeitete ed.). Berlin-Heidelberg: Springer.Google Scholar
  43. Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. Informatica, 31, 249–268.zbMATHMathSciNetGoogle Scholar
  44. Kumar, S. (2002). Intelligent manufacturing systems (pp. 1–20). Ranchi. Retrieved from
  45. Kwak, D.-S., & Kim, K.-J. (2012). A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes. Expert Systems with Applications, 39(3), 2590–2596. doi: 10.1016/j.eswa.2011.08.114.CrossRefMathSciNetGoogle Scholar
  46. Laili, Y., Tao, F., Zhang, L, & Ren, L. (2011). The optimal allocation model of computing resources in cloud manufacturing system. Seventh International Conference on Natural Computation (pp. 2322–2326). doi: 10.1109/ICNC.2011.6022564.
  47. Larose, D. (2005). Discovering knowledge in data—an introduction to data mining. Hoboken: Wiley.CrossRefzbMATHGoogle Scholar
  48. Lewis, F. L., Horne, B. G., & Abdallah, C. T. (1996). On the computational complexity of the manufacturing job shop and reentrant flow time (pp. 1–27). Retrieved July 10, 2013, from
  49. Lu, S. C.-Y. (1990). Machine learning approaches to knowledge synthesis and integration tasks for advanced engineering automation. Computers in Industry, 15(1990), 105–120.CrossRefGoogle Scholar
  50. Lu, S. C.-Y., & Suh, N.-P. (2009). Complexity in design of technical systems. CIRP Annals—Manufacturing Technology, 58(1), 157–160. doi: 10.1016/j.cirp.2009.03.067.CrossRefGoogle Scholar
  51. Manning, C. D., Raghavan, P., & Schütze, H. (2009). An introduction to information retrieval. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Mayer-Bachmann, R. (2007). Integratives Anforderungsmanagement—Konzept und Anforderungsmodell am Beispiel der Fahrzeugentwicklung. Dissertation Universität Karlsruhe (TH), Universitätsverlag Karlsruhe, Karlsruhe.Google Scholar
  53. Mei, D. C., Xie, C. W., & Zhang, L. (2004). The stationary properties and the state transition of the tumor cell growth mode. The European Physical Journal B, 41(1), 107–112. doi: 10.1140/epjb/e2004-00300-1.CrossRefGoogle Scholar
  54. Monostori, L. (2002). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. In 15th Triennial World Congress (p. 12). Barcelona, Spain.Google Scholar
  55. Monostori, L., Márkus, A., Van Brussel, H., & Westkämper, E. (1996). Machine learning approaches to manufacturing. CIRP Annals, 45(2), 675–712.Google Scholar
  56. Monostori, L., Hornyák, J., Egresits, C., & Viharos, Z. J. (1998). Soft computing and hybrid AI approaches to intelligent manufacturing. In Tasks and Methods in Applied Artificial Intelligence Lecture Notes in Computer Science (Vol. 1416, pp. 765–774). doi: 10.1007/3-540-64574-8_463.Google Scholar
  57. Monostori, L., Váncza, J., & Kumara, S. R. T. (2006). Agent-based systems for manufacturing. CIRP Annals—Manufacturing Technology, 55(2), 697–720.CrossRefGoogle Scholar
  58. Musa, A., Gunasekaran, A., & Yusuf, Y. (2013). Supply chain product visibility: Methods, systems and impacts. Expert Systems with Applications. doi: 10.1016/j.eswa.2013.07.020.Google Scholar
  59. Nearchou, A. C. (2011). Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization. International Journal of Production Economics, 129(2), 242–250. doi: 10.1016/j.ijpe.2010.10.016.Google Scholar
  60. Nilsson, N. J. (2005). Introduction to machine learning (p. 188). Stanford: Stanford University Press.Google Scholar
  61. OMG. (2010). Business process model and notation (BPMN). Object management group. Retrieved October 4, 2012, from
  62. Pham, D. T., & Afify, A. A. (2005). Machine-learning techniques and their applications in manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(5), 395–412. doi: 10.1243/095440505X32274.CrossRefGoogle Scholar
  63. Pearl, J. (2003). Causality: Models, reasoning, and inference. Econometric Theory, 19, 675–685. doi: 10.1017/S0266466603004109.
  64. Ponsignon, T., & Mönch, L. (2012). Heuristic approaches for master planning in semiconductor manufacturing. Computers and Operations Research, 39(3), 479–491. doi: 10.1016/j.cor.2011.06.009.Google Scholar
  65. Reuter, M. (2007). Methodik der Werkstoffauswahl, Der systematische Weg zum richtigen Material. München: Carl Hanser-Verlag.Google Scholar
  66. Rohweder, J. P., Kasten, G., Malzahn, D., Piro, A., & Schmid, J. (2011). Informationsqualität—Definitionen, Dimensionen und Begriffe. In K. Hildebrand, M. Gebauer, H. Hinrichs, & M. Mielke (Eds.), Daten-und Informationsqualität (pp. 25–45). Wiesbaden: Vieweg+Teubner. doi: 10.1007/978-3-8348-9953-8.Google Scholar
  67. Rosemann, M., & Schütte, R. (1997). Grundsätze ordnungsmäßiger Referenzmodellierung. In J. Becker, M. Rosemann, R. Schütte (Hrsg.), Entwicklungsstand und Entwicklungsperspektiven der Referenzmodellierung (16–33). Münster: Arbeitsberichte des Instituts für Wirtschaftsinformatik.Google Scholar
  68. Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal, 3(3), 210–229.CrossRefGoogle Scholar
  69. Sarich, M., Schutte, C., & Vanden-Eijden, E. (2010). Optimal fuzzy aggregation of networks. Multiscale Modeling and Simulation, 8(4), 1535–1561.CrossRefzbMATHMathSciNetGoogle Scholar
  70. Schatt, W., & Worch, H. (2003). Werkstoffwissenschaft 9, Auflage. Weinheim: Wiley.Google Scholar
  71. Schöning, U. (2001). Theoretische Informatik—kurzgefasst. Heidelberg, Berlin: Spektrum, Akademischer Verlag.Google Scholar
  72. Seidel, W. W., & Hahn, F. (2010). Werkstofftechnik 8, neu (bearbeitete ed.). München: Carl Hanser-Verlag.Google Scholar
  73. Shetwan, A. G., Vitanov, V. I., & Tjahjono, B. (2011). Allocation of quality control stations in multistage manufacturing systems. Computers and Industrial Engineering, 60(4), 473–484. doi: 10.1016/j.cie.2010.12.022.CrossRefGoogle Scholar
  74. Simon, H. A. (1983). Why should machines learn? In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning: An artificial intelligence approach (pp. 25–38). Charlotte: Tioga Press.Google Scholar
  75. Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning. Cambridge: Cambridge University Press.Google Scholar
  76. Söhner, J. (2003). Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der Finite-Elemente-Methode. Dissertation, Universität Karlsruhe.Google Scholar
  77. Sölter, J. (2010). Ursachen und Wirkmechanismen der Entstehung von Verzug infolge spanender Bearbeitung. Dissertation Universität Bremen, Shaker Verlag, Aachen.Google Scholar
  78. Sölter, J., & Brinksmeier, E. (2008). Modelling and simulation of ring deformation due to clamping. In International Conference on Distortion Engineering. September 17–19, 2008 (pp. 143–151). Bremen, Germany.Google Scholar
  79. Sonnenberg, F., & Beck, J. R. (1993). Markov models in medical decision making: A practical guide. Medical Decision Making, 13(4), 322–338. doi: 10.1177/0272989X9301300409.CrossRefGoogle Scholar
  80. Srdoč, A., Bratko, I., & Sluga, A. (2007). Machine learning applied to quality management—a study in ship repair domain. Computers in Industry, 58(5), 464–473. doi: 10.1016/j.compind.2006.09.013.CrossRefGoogle Scholar
  81. Stoumbos, Z., & Sullivan, J. (2002). Robustness to non-normality of the multivariate EWMA control chart. Journal of Quality Technology, 34(3), 260–276.Google Scholar
  82. Suh, N. P. (2005). Complexity in engineering. CIRP Annals—Manufacturing Technology, 54(2), 46–63. doi: 10.1016/S0007-8506(07)60019-5.CrossRefGoogle Scholar
  83. Surm, H. (2011). Identifikation der verzugsbestimmenden Einflussgrößen beim Austenitisieren am Beispiel von Ringen aus dem Wälzlagerstahl 100Cr6. Dissertation, University of Bremen.Google Scholar
  84. Surm, H., & Rath, J. (2012). Mechanismen der Verzugsentstehung bei Wälzlagerringen aus 100Cr6 (Distortion Mechanisms in the Process Chain Bearing Ring). Journal of Heat Treatment Materials, 67(5), 1–13.Google Scholar
  85. Taisch, M., Cammarino, B. P., & Cassina, J. (2011). Life cycle data management: First step towards a new product lifecycle management standard. International Journal of Computer Integrated Manufacturing, 24(12), 1117–1135. doi: 10.1080/0951192X.2011.608719.CrossRefGoogle Scholar
  86. Tiwari, V., Patterson, J. H., & Mabert, V. (2009). Scheduling projects with heterogeneous resources to meet time and quality objectives. European Journal of Operational Research, 193(3), 780–790. doi: 10.1016/j.ejor.2007.11.005.CrossRefzbMATHMathSciNetGoogle Scholar
  87. Tönshoff, H. K., & Denkena, B. (2013). Basics of cutting and abrasive processes. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-33257-9.CrossRefGoogle Scholar
  88. Udo, G. J. (1992). Neural networks applications in manufacturing processes. Computers and Industrial Engineering, 23(1–4), 97–100.CrossRefGoogle Scholar
  89. Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from
  90. Verstraete, F., Wolf, M. M., & Cirac, J. I. (2007). Matrix product state representations. Retrieved from
  91. Wang, K., & Tsung, F. (2007). Run-to-run process adjustment using categorical observations. Journal of Quality Technology, 39(4), 312–325.MathSciNetGoogle Scholar
  92. Weisstein, E. W. (2011). Bipartite graph. Retrieved May 10, 2013, from
  93. Westkämper, E., & Warnecke, H. (2010). Einführung in die Fertigungstechnik (8th ed.). Wiesbaden: Vieweg+Teubner-Verlag.CrossRefGoogle Scholar
  94. Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(6), 2560–2574. doi: 10.1016/j.ymssp.2006.12.007.CrossRefGoogle Scholar
  95. Wuest, T., Klein, D., & Thoben, K.-D. (2011a). State of steel products in industrial production processes. Procedia Engineering, 10(2011), 2220–2225.Google Scholar
  96. Wuest, T., Klein D., Seifert, M., & Thoben, K.-D. (2011b). Challenges for grown engineering SMEs with a diverse product portfolio on information management and product tracking and tracing. In J. Frick (Eds.), Value Networks: Innovation, Technologies and Management. Proceedings of the APMS 2011 International Conference of Advances in Production Management Systems, September 26–28, 2011. Stavanger, Norway. ISBN 978-82-7644-461-2.Google Scholar
  97. Wuest, T., & Thoben, K.-D. (2012a). Exploitation of material property potentials to reduce rare raw material waste—a product state based concept for manufacturing process improvement. Journal of Mining World Express (MWE), 1(1), 13–20.Google Scholar
  98. Wuest, T., Klein, D., Seifert, M., & Thoben, K.-D. (2012b). Method to describe interdependencies of state characteristics related to distortion. Materialwissenschaft und Werkstofftechnik, 43(1–2), 186–191. doi: 10.1002/mawe.201100908.Google Scholar
  99. Wuest, T., Irgens, C., & Thoben, K.-D. (2013a). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167–1180.Google Scholar
  100. Wuest, T., Werthmann, D., & Thoben, K. (2013b). Towards an approach to identify the optimal instant of time for information capturing in supply chains. In V. Prabhu, M. Taisch & D. Kiritsis (Eds.), APMS 2013, Part I, IFIP AICT 414, IFIP International Federation for Information Processing (pp. 3–12).Google Scholar
  101. Wuest, T., Knoke, B., & Thoben, K.-D. (2014a). Applying graph theory and the product state concept in manufacturing. Procedia Technology, 15(2014), 349-358. doi:  10.1016/j.protcy.2014.09.089.Google Scholar
  102. Wuest, T., Liu, A., Lu, S. C.-Y., & Thoben, K.-D. (2014b). Application of the stage gate model in production supporting quality management. Procedia CIRP, 17, 32-37. doi:  10.1016/j.procir.2014.01.071.Google Scholar
  103. Yang, K., & Trewn, J. (2004). Multivariate statistical methods in quality management. New York: McGraw-Hill.Google Scholar
  104. Zhang, J., & Wang, H. (2009). A minimized zero mean entropy approach to networked control systems. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, IEEE (pp. 6876–6881). Shanghai, China. doi: 10.1109/CDC.2009.5400679.
  105. Zoch, H.-W. (2012). Distortion engineering—interim results after one decade research within the collaborative research center. Materialwissenschaft und Werkstofftechnik, 43(1–2), 9–15. doi: 10.1002/mawe.201100881.CrossRefGoogle Scholar
  106. Zoch, H.-W. & Lübben, T. (2011). Verzugsbeherrschung—Systemorientierter Ansatz als wesentliche Voraussetzung für den Erfolg. Stahl Strukturen. In W. Bleck (Ed.), Industrie-, Forschungs-, Mikro- und Bauteilstrukturen—Tagungsband zum 26. Aachener Stahlkolloquium, 19./20.05.2011. Verlagshaus Mainz, ISBN 3-86130-258-6.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ICT Applications for ProductionBIBA—Bremer Institut für Produktion und Logistik GmbHBremenGermany
  2. 2.Department of Production EngineeringUniversity of BremenBremenGermany

Personalised recommendations