Current Approaches with a Focus on Holistic Information Management in Manufacturing

  • Thorsten WuestEmail author
Part of the Springer Theses book series (Springer Theses)


In this section, the focus is laid on existing approaches and concepts that try to address some of the identified challenges of MS when it comes to transparent and product specific information and data management. The main focal methods and concepts are PDM, PLM and quality monitoring in manufacturing. The presented domain specific knowledge is discussed within this section as it has strong relations with the later concept development. In order to allow the reader to easily identify the relation of the individual method to the product state concept, a short conclusion after each section highlights the relevancy and connection to the topic. The final sub-section of this third section will furthermore briefly summarize the complete section and help the reader with the transition towards the next section where the product state concept is presented.


Quality Monitoring Individual Product Enterprise Resource Planning Enterprise Resource Planning System Product Lifecycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramovici, M. (2007). Future trends in product lifecycle management (PLM). In: F.-L. Krause (Ed.), The Future of Product Development—Proceedings o the 17th CIRP Design Conference (pp. 665–674). Berlin, Heidelberg: Springer.Google Scholar
  2. Abramovici, M., & Sieg, O. (2001). PDM—Technologie im Wandel—Stand und Entwicklungsperspektiven. Orientierung für die Praxis. Industrie Management, 5, 71–75.Google Scholar
  3. Brecher, C., Müller, S., Breitbach, T., & Lohse, W. (2013). Viable system model for manufacturing execution systems. Procedia CIRP, 7, 461–466.CrossRefGoogle Scholar
  4. Brinkheinrich, M. (2008). Transparenz durch Traceability. Rückverfolgbarkeit von Produkten und Produktionsprozessen - warum und wie. Der Betriebsleiter, 6(2008):18–19.Google Scholar
  5. Cao, H., & Folan, P. (2012). Product life cycle: the evolution of a paradigm and literature review from 1950–2009. Production Planning & Control, 23(8), 641–662.CrossRefGoogle Scholar
  6. Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, G., & Georgoulias, K. (2009). Digital manufacturing: history, perspectives, and outlook. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223(5), 451–462. doi: 10.1243/09544054JEM1241.CrossRefGoogle Scholar
  7. Corsten, H. & Gössinger, R. (2008). Lexikon der Betriebswirtschaftslehre (5 Aufl.). Oldenburg.Google Scholar
  8. Ding, Y., Shi, J., & Ceglarek, D. (2002). Diagnosability analysis of multi-station manufacturing processes. Journal of Dynamic Systems, Measurement, and Control, 124, 1–13.CrossRefGoogle Scholar
  9. Fasser, Y., & Brettner, D. (2002). Management for quality in high-technology enterprises. New York: Wiley-Interscience.Google Scholar
  10. Fasoli, T., Terzi, S., Jantunen, E., Kortelainen, J., Sääski, J. & Salonen, T. (2011). Challenges in data management in product life cycle engineering. In J. Hesselbach & C. Herrmann (Ed.), Glocalized solutions for sustainability in manufacturing (pp. 525–530). Heidelberg, Berlin: Springer.Google Scholar
  11. Forza, C., & Filippini, R. (1998). TQM impact on quality conformance and customer satisfaction: A causal model. International Journal of Production Economics, 55, 1–20.CrossRefGoogle Scholar
  12. Ganesan, R., Das, T. K., & Venkataraman, V. (2004). Wavelet-based multiscale statistical process monitoring: A literature review. IIE Transactions, 36(9), 787–806.CrossRefGoogle Scholar
  13. Gimenez, D. M., Vegetti, M., Leone, H. P. & Henning, G. (2008). Product ontology: defining product-related concepts for logistics planning activities. Computers in Industry, 2/3(59), 232–240.Google Scholar
  14. Golovatchev, J. D., & Budde, O. (2007). A holistic product lifecycle management framework facing the challenges of 21st century. In 3rd International Conference on Lifecycle Management, Zurich (pp. 577–590).Google Scholar
  15. Helo, P., Suorsa, M., Hao, Y., & Anussornnitisarn, P. (2014). Toward a cloud-based manufacturing execution system for distributed manufacturing. Computers in Industry, 65(4), 646–656. doi: 10.1016/j.compind.2014.01.015.CrossRefGoogle Scholar
  16. Hoyer, R. W., & Hoyer, B. B. Y. (2001). What is quality. Quality Progress, 34, 53–62.Google Scholar
  17. Hribernik, K. A., Pille, C., Jeken, O., Thoben, K.-D., Windt, K. & Busse, M. (2010). Autonomous control of intelligent products in beginning of life processes. In International Conference on Product Lifecycle Management. Google Scholar
  18. Hussain, M. A. (1999). Review of the applications of neural networks in chemical process control—Simulation and online implementation. Artificial Intelligence in Engineering, 13(1), 55–68.CrossRefGoogle Scholar
  19. Jansen-Vullers, M. H., van Drop, C. A., & Beulens, A. J. M. (2003). Managing traceability information in manufacture. International Journal of Information Management, 23(2003), 395–413.CrossRefGoogle Scholar
  20. Jenab, K., & Ahi, P. (2010). Fuzzy quality feature monitoring model. International Journal of Production Research, 48(17), 5021–5030. doi: 10.1080/00207540903117907.CrossRefzbMATHGoogle Scholar
  21. Jiang, P., Jia, F., Wang, Y., & Zheng, M. (2012). Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. Journal of Intelligent Manufacturing, (2012). doi: 10.1007/s10845-012-0703-0.
  22. Jun, H.-B., Kiritsis, D., & Xirouchakis, P. (2007). Research issues on closed-loop PLM. Computers in Industry, 58(8–9), 855–868. doi: 10.1016/j.compind.2007.04.001.CrossRefGoogle Scholar
  23. Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers & Chemical Engineering, 32(1–2), 12–24. doi: 10.1016/j.compchemeng.2007.07.005.CrossRefGoogle Scholar
  24. Kaynak, H. (2003). The relationship between total quality management practices and their effects on firm performance. Journal of Operations Management, 21, 405–435.CrossRefGoogle Scholar
  25. Kiritsis, D., Bufardi, A., & Xirouchakis, P. (2003). Research issues on product lifecycle management and information tracking using smart embedded systems. Advanced Engineering Informatics, 17(3–4), 189–202. doi: 10.1016/j.aei.2004.09.005.CrossRefGoogle Scholar
  26. Köksal, G., Batmaz, İ., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 38(10), 13448–13467. doi: 10.1016/j.eswa.2011.04.063.CrossRefGoogle Scholar
  27. Leong, K. K., Yu, K. M., & Lee, W. B. (2002). Product data allocation for distributed product data management systems. Computers in Industry, 47(2002), 289–298.CrossRefGoogle Scholar
  28. Liu, T. D., & Xu, W. (2001). A review of web-based product data management systems. Computers in Industry, 44(2001), 251–262.Google Scholar
  29. Meffert, H., Burmann, C., & Kirchgeorg, M. (2008). Marketing - Grundlagen marktorientierter Unternehmensführung (p. 924). Gabler.Google Scholar
  30. Montgomery, D. (2005). Introduction to statistical quality control. Hoboken, NJ: Wiley.zbMATHGoogle Scholar
  31. Moorthy, A., & Vivekanand, S. (2007). Integration of PLM with other concepts for empowering business environments. In M. Garetti, S. Terzi, P. D. Ball, & S. Han (Eds.), Product lifecycle management, Special Publication 3 (p. 93). Bergamo/Milano.Google Scholar
  32. Musa, A., Gunasekaran, A., & Yusuf, Y. (2013). Supply chain product visibility: Methods, systems and impacts. Expert Systems with Applications. doi: 10.1016/j.eswa.2013.07.020.
  33. Nebl, T. (2007). Produktionswirtschaft (6th edn.). München: Oldenbourg Verlag.CrossRefGoogle Scholar
  34. Paul, G., & Paul, R. (2008). Engineering data management and product data management: Roles and prospects. In International Scientific Conference Computer Science (pp. 614–619).Google Scholar
  35. Peltonen, H., Pitkänen, O., & Sulonen, R. (1996). Process-based view of product data management. Computers in Industry, 31(3), 195–203. doi: 10.1016/S0166-3615(96)00051-6.CrossRefGoogle Scholar
  36. Pokharel, S., & Mutha, A. (2009). Perspectives in reverse logistics: A review. Resources, Conservation and Recycling, 53(4), 175–182. doi: 10.1016/j.resconrec.2008.11.006.CrossRefGoogle Scholar
  37. Robinson, C. J., & Malhotra, M. K. (2005). Defining the concept of supply chain quality management and its relevance to academic and industrial practice. International Journal of Production Economics, 96, 315–337.CrossRefGoogle Scholar
  38. Samson, D., & Terziovski, M. (1999). The relationship between total quality management practices and operational performance. Journal of Operations Management, 17, 393–409.CrossRefGoogle Scholar
  39. Saaksvuori, A., & Immonen, A. (2004). Product lifecycle management. Berlin, Heidelberg, NY: Springer.CrossRefGoogle Scholar
  40. Seifert, M. (2007). Unterstützung der Konsortialbildung in Virtuellen Organisationen durch prospektives Performance Measurement. Dissertation. Universität Bremen, Bremen, Germany.Google Scholar
  41. Sendler, U. (2009). Das PLM-Kompendium. Referenzbuch des Produkt-Lebenszyklus- Managements. Heidelberg: Springer.CrossRefGoogle Scholar
  42. Silva, R. G. (2009). Condition monitoring of the cutting process using a self-organizing spiking neural network map. Journal of Intelligent Manufacturing, 21(6), 823–829. doi: 10.1007/s10845-009-0258-x.CrossRefGoogle Scholar
  43. Simão, J. M., Stadzisz, P. C., & Morel, G. (2006). Manufacturing execution systems for customized production. Journal of Materials Processing Technology, 179(1–3), 268–275. doi: 10.1016/j.jmatprotec.2006.03.064.CrossRefGoogle Scholar
  44. Sitek, P. (2012). Quality management to support single companies in colloborative enterprise networks. Dissertation. University of Bremen, Bremen, Germany.Google Scholar
  45. Stark, J. (2011). Product lifecycle management, 21st century paradigm for product realization. Heidelberg: Springer. doi: 10.1007/978-0-85729-546-0.Google Scholar
  46. Steffelbauer-Meuche, G. (2004). Qualitätsmanagement in der Internen Revision (1. Aufl.). Sternenfels: Wissenschaft und Praxis.Google Scholar
  47. Sukchotrat, T., Kim, S. B., & Tsung, F. (2009). One-class classification-based control charts for multivariate process monitoring. IIE Transactions, 42(2), 107–120. doi: 10.1080/07408170903019150.CrossRefGoogle Scholar
  48. Sundin, E. (2009). Life-cycle perspectives of product/service-wSystems: In design theory. In M. L. Sakao (Ed.), Introduction to product/service-system design (pp. 31–49). London: Springer.CrossRefGoogle Scholar
  49. Terzi, S., Panetto, H., Morel, G., & Garetti, M. (2007). A holonic metamodel for product traceabily in PLM. International Journal of Product Lifecycle Management, 2(3), 253–289. doi: 10.1504/IJPLM.2007.016292.CrossRefGoogle Scholar
  50. Tietjen, T., Decker, A., & Müller, D. H. (2011). FMEA Praxis - Das Komplettpaket für Training und Anwendung. München: Carl Hanser Verlag.Google Scholar
  51. Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from
  52. Van Dorp, K.-J. (2002). Tracking and tracing: A structure for development and contemporary practices. Logistics Information Management, 15(1), 24–33. doi: 10.1108/09576050210412648.CrossRefGoogle Scholar
  53. Wannenwetsch, H. (2010). Integrierte Materialwirtschaft und Logistik Beschaffung, Logistik, Materialwirtschaft und Produktion. Berlin: Springer.Google Scholar
  54. Wiers, V. C. S. (2002). A case study on the integration of APS and ERP in a steel processing plant. Production Planning & Control, 13(6), 552–560.CrossRefGoogle Scholar
  55. Wuest, T., Klein D., Seifert, M. & Thoben, K.-D. (2011). Challenges for grown engineering SMEs with a diverse product portfolio on information management and product tracking and tracing. In: Frick, J. (Eds.), Value Networks: Innovation, Technologies and Management. Proceedings of the APMS 2011 International Conference of Advances in Production Management Systems, September 26–28, 2011, Stavanger, Norway. ISBN 978-82-7644-461-2.Google Scholar
  56. Wuest, T., Irgens, C., & Thoben, K.-D. (2013a). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167–1180.Google Scholar
  57. Wuest, T., Werthmann, D. & Thoben, K. (2013b). Towards an approach to identify the optimal instant of time for information capturing in supply chains. In V. Prabhu, M. Taisch & D. Kiritsis (Eds.), APMS 2013, Part I, IFIP AICT 414, IFIP International Federation for Information Processing (pp. 3–12).Google Scholar
  58. Wuest, T., Hribernik, K., & Thoben, K.-D. (2014a). Accessing servitization potential of PLM data by applying the product avatar concept. Production Planning and Control, XX(XX), XX–XX (accepted).Google Scholar
  59. Wuest, T., Liu, A., Lu, S. C.-Y., & Thoben, K.-D. (2014b). Application of the stage gate model in production supporting quality management. Procedia CIRP, 17, 32–37. doi: 10.1016/j.procir.2014.01.071.CrossRefGoogle Scholar
  60. Zantek, P. F., Wright, G. P., & Plante, R. D. (2006). A self-starting procedure for monitoring process quality in multistage manufacturing systems. IIE Transactions, 38(4), 293–308. doi: 10.1080/07408170500208354.CrossRefGoogle Scholar
  61. Zhang, Y., Jiang, P., Huang, G., Qu, T., Zhou, G., & Hong, J. (2010). RFID-enabled real-time manufacturing information tracking infrastructure for extended enterprises. Journal of Intelligent Manufacturing, 23(6), 2357–2366. doi: 10.1007/s10845-010-0475-3.CrossRefGoogle Scholar
  62. Zorriassatine, F., & Tannock, J. D. T. (1998). A review of neural networks for statistical process control. Journal of Intelligent Manufacturing, 9(3), 209–224.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ICT Applications for ProductionBIBA—Bremer Institut für Produktion und Logistik GmbHBremenGermany
  2. 2.Department of Production EngineeringUniversity of BremenBremenGermany

Personalised recommendations